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1.0 INTRODUCTION

The design of modern aerospace vehicle concepts increasingly requires the de-
triled understanding and synergistic use of ever more complex fluid phenomena. Both

industry and government view Computational Fluid Dynamics (CFD) as a critical,
potentially efficient and cost-effective technology for the development of advanced

aerospace configurations. The overall technical problem in CFD is to devise reliable

numerical approaches to simulate the complex fluid physics arising in flow about com-
plex shapes/topologies. Any approach to the solution of this problem must address

the following issues: (a) appropriate modeling of the physics, (b) proper match be-

tween physics and numerics, (c) accuracy, (d) geometric flexibility, and (e) ease of
use. In today's environment, these issues must also be treated in ways which are

compatible and synergistic with both proven and emerging high-performance com-
puter architectures. The major thrust of the Science Center's CFD program is to

effect rapid but sustained strides in algorithm and code development to exploit the
increasing power of supercomputers, super-minicomputers, parallel computers, and

graphics workstations in order to systematically and continually improve the use of

CFD in state-of-the-art design and analysis scenarios.

In FY 90, we embarked on an ambitious plan to begin the development of the

next generation of CFD codes and technology - the successors to the proven and
successful USA-series (Unified Solution Algorithms) of codes that are currently in
widespread use in Rockwell and in Government agencies. The new generation is

based on very significant developments in computational algorithms accomplished in
past and present research and will also benefit from the considerable experience the

CFD Department's researchers have acquired in working with more than one hundred
users throughout Rockwell and in other DoD agencies.

In this endeavor, we looked forward to participate in Government-sponsored re-

search programs which are particularly well matched with our quest for the next

higher plateau in CFD capability. The current contract (awarded September, 1990
by NWC to Rockwell International Science Center) fits that category extremely well.

The general objective of this program is to conduct an algorithm research and de-
velopment effort that will result in the demonstrated capability to provide accurate
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numerical flowfield data for situations typical of weapon carriage and release from

an internal weapon bay. This program permits us to apply and specialize the very

general algorithmic capability that we have developed to the challenging problem of

computing the airloads and separation characteristics of internally carried weapons.

It will serve as a key demonstration of the flexibility of the new capability that we

have built. In turn, we hope to provide NWC with a very powerful new CFD ca-

pability that will serve them well for years to come. During the first phase of the

program, the goal is to demonnstrate inviscid 3-d static and 2-d dynamic capability.

In the next phase, the focus will be on viscous static 3-d and inviscid dynamic 3-d

capability. The third phase deals with 3-d viscous and dynamic CFD analysis of a

missile emerging from a weapon bay for which the missile trajectory is determined

by integrating the CFD flowfield solver with a six degree-of-freedom trajectory algo-

rithm. This report presents work done during Phase I along with detailed reference

material for the overall computational framework.

This report is organized into two major sections identified by Roman numerals:

Section I is a synopsis of Phase I work and Section II contains all the technical details.

These major sections include several chapters each. For convenience, these are iden-

tified as sections with Arabic numerical identifiers. Section 2 presents a summary of

work performed during Phase I followed by Section 3 containing conclusions that can

be drawn at this point during the three-phase program. Section 4 discusses the overall

numerical framework for the current generation of UNIVERSE-series codes and forms

the background for all subsequent sections. Section 5 presents three sets of equations,

including the Euler equations, which can be solved using the UNIVERSE-series code

under consideration. Section 6 presents various exact and approximate "Riemann

Solvers." Section 7 presents detailed descriptions of the geometry treatment for three

types of conservation cells (hexahedron, triangular prism, and tetrahedron). Section

8 deals with treatment of "topology" - the way the cells are connected together

and how the connectivities change when new nodes and cells are introduced nr links

removed. Section 9 presents in detail the primary grid generation method (TRIM3D)

that is used to generate 3-d unstructured tetrahedral meshes used in this effort as well

as a briefer description of a 2-d unstructured grid method (TRIM2D). This section

also includes a discussion of methods that can be employed to "smooth" the meshes

as well as a consideration of issues involved in constructing meshes with higher-order

.. .... .
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geometry information. Store-tracking and corresponding grid-adaptation issues are

covered in Section 10. The links between boundary condition and geometry specifi-

cations as well as the specific implementation of boundary condition procedures in

UNIVERSE-series codes at this time are presented in Section 11. Software architec-

ture issues are discussed in Section 12. This includes reasons why the C language is

particularly well suited to this effort. The various options and features possible under

UNIVERSE-series algorithm and code framework are presented in Section 13. Sev-

eral illustrative examples are presented in Section 14 including examples with scalar

equations and the Euler equations, and problems in one, two and three dimensions.

Section 15 includes a compilation of all cited references.

2.0 SUMMARY

During Phase I, the focus was on inviscid flows (2-d dynamic and 3-d static). A

summary of progress for Phase I follows:

1. Three versions of a UNIVERSE-series flow solver were delivered to NWC. The

first is UNIV1 and is written entirely in Fortran. The second is UNIVCF and

includes sections in C which can be linked with the Fortran routines in UNIV1.

The third is UNIVC which is almost totally written in the C language. It is

expected that UNIVC will be the version to grow into Phase II. The exercise of

developing the software in C has verified the expectation that the C language

offers greater flexibility for implementing many needed versatile features.

2. A 2-d unstructured grid generation software (TRIM2D) has been delivered to

NWC.

3. A 3-d unstructured grid generation software (TRIM3D) has been delivered to

NWC.

4. The UNIVC flow solver includes a built-in 2-d plotting capability that can display

results on Tektronix terminals. A pilot version of 3-d visualization software that

is compatible with the flow solver and that runs on Silicon Graphics workstations

has also been delivered to NWC.
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5. A 3-d static inviscid CFD flow field computation around an F-18 configuration
with pylon, rack and bombs has been demonstrated.

6. The inviscid flowfield for a 3-d missile in a 3-d cavity has been completed.

7. A store-tracking approach that exploits local grid adaptation (addition of cells,
removal of short links, etc.) has been developed.

8. A 2-d case of a weapon in a bomb bay has been computed as a static case and
the corresponding dynamic computation is in progress.

9. Several 1-d, 2-d and 3-d unit problems have been solved and are included in
Section 14 as illustrative examples along with results for items 5-8 above.

10. Version description documents and user manuals have been written for UNIVC,
TRIM3D, and TRIM2D. Similar information for the graphics software will be
provided in Phase II when that software development has stabilized.

7
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3.0 CONCLUSIONS

Section II will show that a new CFD framework has been developed which is more

accurate and versatile than the previous state of the art for solving fluid dynamics

problems involving complex geometries and complex flow phenomena such as shock

waves. Some of the features of the nurterical algorithms are listed here.

1. The grid generation method is able to automatically generate tetrahedral meshes

for very complex topologies and the flow solver is able to accurately compute the

solution on the resulting unstructured mesh. Three 3-d examples are provided

in Section 14 (Space Shuttle multibody configuration, F-18 configuration with

pylon and external stores, missile in a cavity).

2. Various levels of solution accuracy can be selected. Up to sixth-order spatial

accuracy is available for 1-1 problems and up to fourth-order spatial accuracy

can be specified for 2-d and 3-d problems. Higher orders of solution accuracy

can be implemented within the general framework if desired. Only second-order

accuracy was required in Phase I but higher-order accuracy was folded in from

the beginning anyway.

3. The solution accuracy must be combined with corresponding accuracy of geome-

try treatment. The geometry formulation is also extremely general and allows the

specification and use of higher order shape functions to represent the geometry

of each conservation cell.

4. The grid generation methodology must be able to provide such higher order mesh

representation. During Phase I, standard linear tetrahedra were generated. In

Phase II, a method to construct higher order geometry representations from such

meshes will be implemented.

5. Several variations of Essentially nonoscillatory (ENO) interpolation techniques

have been explored and implemented in order to evaluate the pros and cons of

various approaches.

6. Several Riemann Solvers are included to permit the investigation of the significant

properties of each. The exact Riemann Solver is computationally more expensive

8
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than simpler ones. In the future, a strategy of automatically selecting the most

inexpensive but adequate Rliemann Solver for each cell or face based on the local

flow behaviour can easily be considered because of the availability of such a

spectrum of Riemann Solvers.

7. The UNIVC flow solver can solve 1-d, 2-d, axisymmetric and 3-d pr-blems. This

will enable a typical user to achieve a higher degree of proficiency in using the

software because all problems can be solved using the same code. This also

permits much more extensive validation of the methodology than is possible

with separate codes.

8. The geometry specification is always assumed to be three dimensional. In order
to perform a 1-d computation, a collection of 3-d cells strung along one dimension

can be used. In addition to this, masks can be specified in order to avoid com-

puting fluxes for all faces for a problem which is not 3-d. Proper symmetries can
be specified for certain cell faces for problems with known symmetries (such as

axisymmetric flow). The polynomials of the solution variables need only match

the dimensionality requirement for the solution. For 1-d problems, for example,

polynomials using powers of z can be selected; for 2-d problems polynomials in

z and y are used; only for 3-d problems are all independent variables significant
for the solution approximation. All these features result in the computational

efficiency matching the complexity of the problem. Therefore, even though one

code can do many types of problems, the computational time required is about
as small for simpler (l-d, 2-d, or axisymmetric, for example) problems as codes

constructed only for the simpler case.

9. The UNIVC flow solver can solve any desired set of equations. In particular,

three equation sets are built in: a) the linear wave equation, 2) the nonlinear
wave equation (inviscid Burgers' equation in one or more dimensions), and 3) the

Euler equations of inviscid flow. This feature results in an ability to check out the
properties of the numerical algorithm in controlled cond;tions and for a variety

of physical phenomena in many disciplines, with each successful computation

serving as corroboration for the other. For example, mo,-!l equations such as the

linear equation and Burgers' equation serve tc test the properties of the method

by direct comparison with known exact solutions. The ability to perform l-d,

9
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2-d and 3-d problems using the same code enhances this aspect.

10. A simple 2-d plotting capability is built into the flow solver for quick diagnosis of

the solution. Eventually, this will be expanded to include 3-d plotting on graph-
ics work stations. The goal of integrated post-processing capability will allow

maximum consistency between numerical algorithm and visualization, analysis

of results, etc.

11. The UNIVC code is constructed in such a fashion that memory required can be
traded versus speed. For example, least-squares polynomial coefficients can be

computed and stored at the beginning of the run (assuming mesh point locations

and topology do not change). This increases the amount of required main mem-
ory but decreases the computational time. Similarly cell-face normals can either
be computed and stored once for later repetitive use or can be computed upon

demand.

12. It is therefore clear that many features have been built-in with both efficiciency

and flexibility in mind. At this point the topological requirements for adapting

the grid to motion of the external store is still in a state of flux and until the

picture is clearer, the focus will be on modularity and flexibility rather than effi-

ci-,cy. However, computatational speed issues such as vectorization and paral-

lelization on shared memory multiprocessors have been and are being consciously

considered during all stages of code development.

13. A very flexible definition of "neighborhood" (which cells are near a given con-
servation cell) is part of the UNIVERSE-series code framew'ork. In the specific

implementation in UNIVC, only certain aspects of this flexibility are being ex-
ploited but the generality is anticipated to come in useful in future Phases.

14. A hierarchy of cell-face quadrature for integration of geometry and solution vari-
ables over cell boundaries is provided. For example, the mid-point quadrature

formula for solution variables is useful for accuracies up to second order. For
higher order accuracies, if the cell faces are planar, one can avoid computing
more than one set of values for the cell-face normals even while using four-point

quadrature formulae. In the most general and expensive situation, cell-face nor-

mals must be evaluated at each quadrature point. Once again, the focus is on

10
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combining efficiency and generality in an optimal fashion.

15. The UNIVC flow solver can use three types of cells: hexahedral, triangular prism,
and tetrahedral. This level of unification is unique. This feature allows the use

of even existing structured grids while, at the same time, exploiting the improve-

ments in solution accuracy possible within the new framework which employs
true multi-dimensional interpolation even in second-order accuarcy mode. In

this fashion, all the investment made over many years by most CFD organiza-
tions in developing or otherwise acquiring structured grid generation capability

is exploited rather than wasted.

16. The framework includes user-selectable accuracy of temporal evolution. This can

be suitably coupled with the spatial accuracy selection in such a fashion as to
once again optimize the computational effort. For example, second-order spatial
accuracy can be couple to first-order time accuracy for steady state problems

and with second-order time accuracy for time-dependent problems. Fourth-order
spatial accuracy may require the use of fourth-order Runge-Kutta time evolution

operator for stability.

17. In the above, it is clear that the numerical framework and the implementation

of the various software pieces have been selected to permit maximum flexibility

and versatility. For example, higher order accuracy capability in the geometry
and solution variables have been built in from the beginning even if during a

given Phase or for a particular series of computations, all the features of the

methodology will not necessarily be required.

11
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4.0 NUMERICAL FRAMEWORK FOR UNIVERSE-SERIES CODES

We now present background information about the new numerical capability that
has been developed for the conservation laws of fluid dynamics. The approach is based
on algorithms that can be of higher than second order accuracy which are embedded
in a very flexible geometric framework that includes both structured and unstruc-
tured grids. While the cell shapes can be of any type, the book-keeping strategy is
of the "unstructured" type and is even more versatile than popular unstructured-
grid approaches. Codes developed using the new formulations will be part of the
UNIVERSE-series. UNIVERSE denotes a Unification of essentially Vonoscillatory

Interpolation techniques with a geometrically VERSatile implementation. The ENO
(Essentially NonOscillatory) - 4 interpolation facilitates the construction of numer-
ical algorithms which can "capture" discontinuities such as shock waves and which
are of arbitrarily high orders of accuracy, thereby transcending the inherent accu-

racy limitations of TVD schemes. Until recently ENO ideas were limited to either
one-dimensional or Cartesian multi-dimensional applications or assumed smooth co-
ordinate transformations.5 UNIVERSE codes implement a truly multidimensional
unrestricted version of ENO schemes that work with arbitrary cell shapes. For ex-
ample, hexahedral, triangular prism and tetrahedral elements (conservation cells)
can all be covered in a unified manner. This also implies that both structured and
unstructured book-keeping schemes can be employed to conveniently treat complex
topologies. New, fully automatic, unstructured grid generation methods have also
been developed for integration with UNIVERSE-series flow solvers. Related material
can also be found in Ref. 6.

Integral Form of Conservation Laws

The new algorithms have been developed for the general hyperbolic system of

conservation laws represented by
Oq 8f, 82 fa'+ --+ I--+-' =0 (4.1)

5 z i OzZ 4

which is in the "conservation-law form." The dependent (conserved) variables are
denoted by q. The Cartesian coordinate directions (independent variables) are z,

14
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y and z. The components of flux in the three coordinate directions are fl, f2 and

f3. An analogous formulation has also been developed for the quasi-linear or "non-

conservation-law" form of the equations given by

+ A + + = 0 (4.2)
Ox a: y OIz

However, in the present discussion, only the conservation-law form will be considered.

Because of its applicability to "shock capturing", the conservation-law form is more

general and appropriate numerical formulations based on it will be applicable to all

flow-field regimes including subsonic and supersonic flows.

The conservation-law form shown in Eq. 4.1 is in the differential form. We now
present the integral form of the conservation laws which can easily be derived from the

differential form by integrating Eq. 4.1 with respect to x, y, z over any conservation

cell whose volume is V.

( + i + -- + "3z dy dz = 0 (4.3)

This can be rewritten in vector notation as

" IIqddydz+fJJ(V.F )ddydz =0 (4.4)

In the above,

F=f1 j+f 2 k+f 3 l (4.5)

Applying the Gauss divergence theorem, we can convert the volume integral into a

surface integral.

5(M) + 11S (.fi) d = 0 (4.6)

In the above equation, the cell average of the dependent variables are denoted by q.
The outward unit normal at any point of the boundary surface of a cell has been

denoted by fi = fij + fral + fil.

f f fqdV
f f f f dV 

(4.7)
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The integral form of the conservation laws given by Eq. 4.6 defines a system of equa-

tions for the cell average values of the dependent variables. In order to construct

numerical methods to solve the integral form of the conservation laws, we must be

able to define cell geometries, approximate the dependent variables, develop spatial

discretization procedures, develop time integration procedures to update the cell av-

erages, etc. These topics are covered below.

Cell Geometry

A very general and flexible numerical formulation has been developed to solve

the integral form of the governing conservation laws. While any cell shape definition

can be used, details have been developed for three types in particular: (1) tetrahedral

element, (2) triangular prism element, and (3) hexahedral element (Fig. 4.1). The

name element will be used interchangeably with the term "conservation cell." The

entire computational region is assumed to be divided up into a finite number of

elements or conservation cells. The integral form of the conservation laws will be

applied to each such cell. The hexahedral cell provides consistency with conventional

structured-grid formulations. The triangular prism can be useful in situations where

the grid generation can be generated plane by plane. The tetrahedral element will

result in an inherently three-dimensional formulation. Encompassing these three

types provides maximum flexibility in our approach to treat complex geometries.

Each element utilizes a local coordinate system (C, q, a) (Fig. 4.1). Inside each

element, the physical coordinates (x, y, z) are expressed as polynomials in terms of

the local coordinate system. We now define three-dimensional, two-dimensional, and

one-dimensional polynomials.

P3(', = 3-d polynomial

P = 2-d polynomial (4.8)

P()= 1-d polynomial

A "shape function" approach is very useful in the definition of the cell geometry.

The coordinates z, y, z are expanded in terms of the appropriate shape functions for

16
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Fig. 4.1 Three types of conservation cells and their local coordinate system
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each type of element. The geometry polynomials are defined for each cell and their

range is restricted to that cell. Discontinuities in geometry can exist across each cell.

Within each cell, by definition, the geometry will be smooth.

The simplest tetrahedral element comprises 4 nodes and 4 triangular faces. The

geometry variables are expanded in terms of a single three-dimensional polynomial

in the local variables. M 77 a) P

= Z N,( ,v,c)f, (4.9)

nodes

The simplest triangular prism element comprises 6 nodes, 2 triangular faces and

3 quadrilateral faces (a total of 5 faces). The geometry variables are expanded in

terms of the tensor product of a two-dimensional polynomial and a one-dimensional

polynomial.
~=

-= N ,( ,qoj (4.10)

nodes

The simplest hexahedral element comprises 8 nodes and 6 quadrilateral faces.

The geometry variables are defined in terms of the tensor product of three one-

dimensional polynomials.

M(, T1, a) A P1 ( 1v)P1 (a)Z N,v, ,o) f, (4.11)

nodes

Higher order elements (Fig. 4.2) can also be defined and used but will not be

considered in this discussion or in the proposed effort. In the above, f can be z, or V
or z. Each of the polynomials on the right hand side of Eqs. 4.9, 4.10 and 4.11 can

be of arbitrary degree.

Given nodal values of z, ys, z, we can evaluate the geometry polynomials at any

point of the cell that has been defined in terms of the local coordinate system. In

particular, we will need to find (z, y, z.) coordinates of quadrature points on each face

18
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SC. 13.T

Fig. 4.2 Examples of higher order elements
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as well as the components of the outward point normal at these quadrature points.

The geometry polynomials also yield the metrics xf, y, z,,y, ,,z,1 , X,, y,, zo,. In

order to compute the outward pointing normal at any point of a given face of a given

cell, the following steps are defined.

1) Obtain two linearly independent vectors on the face passing through the given

point. Such vectors can easily be defined in terms of the local metrics given

above.

2) The cross product of these two vectors is in the direction of the normal to the

face.

Finite-Element-Like Formulation

The basic numerical framework is based on a finite-element-like (FEL) formula-

tion.

a) We have already seen that the conservation cells are finite elements.

b) In this section, we will approximate the variation of dependent variables within

each cell using polynomials of the physical independent variables x, y, z.

However, the CFD formulation to be presented here differs in several ways from

traditional finite-element (FE) approaches.

c) The CFD FEL approach will use piecewise polynomial interpolation for the de-

pendent variables. These polynomials can be discontinuous across cell bound-

aries; for smooth solution behavior, the difference between left and right values

at a cell face common to two cells will be small. Such a piecewise polynomial

approach facilitates "capturing" discontinuities.

d) The discretization of the governing equations follows directly from the integral
form of the conservation laws. No variational principle or method of weighted

residuals or other indirect approach is employed.

e) The dependent variable polynomials are directly written in terms of x, y, z and

not in terms of the element coordinate system variables C, 17, a. The domain and
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range of the geometry polynomials is restricted to a single cell. The domain of

the dependent variable polynomials is not thus restricted. We will soon see that

for the purpose of evaluating the polynomial coefficients, the dependent variable

polynomials are evaluated over many neighboring cells. At cell faces common to

two or more cells, the overlapping polynomial definitions lead to the piecewise

polynomial approach and helps define left and right states before resolving them
using a Riemann solver.

To provide capability to compute l-d, 2-d and 3-d flows efficiently, the dependent

variable polynomials are defined to be

f(z,y,z) = PA(z,y,z) (4.12a)

or

f(x,y) = P(, Y) (4.12b)

or

(x) = P1 z() (4.12c).

The geometry is always defined in 3-d space. Using the appropriate dependent vari-

able polynomial type, the solution can be forced to be 1-d, 2-d, or 3-d. In this manner,
we can easily compute 1-d, 2-d, and 3-d solutions with the same flow solver. All that

is required in 1-d, for example, is to string together a 1-d collection of cells. In

the present effort, we do not consider tensor product polynomials for the dependent

variables. However, these and other approaches have been developed and applied by

Science Center CFD researchers elsewhere.

In what follows, we only consider the case of three-dimensional dependent vari-

able polynomials for the sake of brevi.. of presentation. The two- and one-dimensional

simplifications can be derived in straight-forward fashion.

We use a hierarchy of polynomials depending on the desired accuracy. The

simplest involves only the constant term.

PA(Z,y,z) = PO (4.13)
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The next level includes linear terms.

P3 (X, y, z) = Po + P1 X + P2 Y + P3 z (4.14)

The next level includes quadratic terms also.

P3(x, Y,z) = po + pi x + P2 y + p 3 z + p4ax 2 + ps5 2 + P6 Z +p2 7xy + ps yz + p 9 zz
I
= Pi Zj ( i) Y k(i) z 1(i)

i=0

(4.15)

Within the general framework, even higher order polynomials can be utilized. How-

ever, it is anticipated that quadratic polynomials will result in accuracies greater

than conventionally achieved in general purpose flow solvers applicable to complex

geometry problems. In the UNIVC flow solver, cubic polynomials are also selectable

in two and three dimensions and even fourth and fifth degree polynomials can be

used in one dimensional problems. In Phase I, computations for large scale problems

were limited to second-order accuracy. However, several unit problem examples were

computed with higher-degree piecewise polynomials. Piecewise linear polynomials

result in second-order accuracy, quadratic polynomials lead to third-order accuracy,

and so on. In Phase II, piecewise quadratic and cubic polynomials will be explored

in more depth to analyse the advantages/disadvantages of using increased order of

accuracy.

In dealing with the integral form of the conservation laws, we must deal with

cell averages of the dependent variables. If we express the dependent variables as

polynomials, we must deal also with cell averages of the polynomials.

I I P(, ,z dV (1 A [[fz (0 k(i) Z'' dxTdy d)
J= i=o (4.16)

In the above we see that the average value of a polynomial taken over an element or
conservation cell can be expressed as a weighted sum of the polynomial coefficients.
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The weights a, depend on the shape of the particular cell over which the average is

defined.
f f fV X'it) k(i) z1 (') dV

S f fdV

It is convenient to define the weights in terms of the gradient of a vector X defined

in turn by

I [ j(i) +  k(i)l (i )  k(i) 1(i) k + Xj(i) k(i) Z 4.+18

3[k(i) + k(i) + 1(i) + 1

In terms of this vector, the weights ai are given by

1
as I I J JVc .x dV (4.19)

- fJj(9j .i) dS

In the above Eq. 4.19, we have been able to simplify the volume integration to a surface

integration in the usual way by applying the Gauss divergence theorem. Comparing

Eq. 4.6 and Eq. 4.19, we see that the surface integration formula applies to both the
dependent variable flux vector f and the "geometry flux vector" Xc.

In what follows, numerical procedures developed to approximate surface integrals

must deem to apply to either type of vector. We first divide the surface integral
into component parts that apply over each distinct face or side of any cell under
consideration. We then replace the integral on each face with a numerical quadrature.

JI jPfi) dS =x IF f)dS (.0

faces(4.20)

- E A
faces quads.

Here, "quads." is an abbreviation for "quadrature points." For second-order applica-

tions, we use the midpoint rule for quadrature for the solution flux integration and a
4-point Gaussian quadrature for computing the geometry weights ai. For higher-order

calculations, the higher-order accurate quadrature formulae are used for the solution
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flux integration. The weights of the quadrature formulae must include the effect of
cell surface area corresponding to the given face and such weights are denoted by S,
in the above equation. The midpoint formula can be represented as

J L ( idS= Z iim, S.. (4.21)

faces

where m denotes the centroid of each face. Even higher-order quadrature formulae
may be employed if necessary in the future.

Outline of Solution Procedure

The original initial value problem (IVP) for the differential form of the conser-
vation laws specifies initial values of the dependent variables. In the IVP for the

integral form of the conservation laws. initial values of cell averages of the dependent
variables will be defined. Given such initial values, the three steps used to set up the
discretization procedure for the integral form of the conservation laws are as follows.

(i) Define dependent variable polynomials in each cell so that the cell average of
the polynomial approximation matches the cell average of the dependent vari-
able which is either given as part of the initial value specification or obtained
by updating the cell averages during subsequent steps of the solution process.

This process of defining pointwise polynomial behavior from known values of cell
averages is called the "reconstruction procedure" and is the major subject of the

next section.

(ii) Evaluate the polynomials at all quadrature points. This will lead to "left" and
"right" values at each quadrature point which lies on a face common to two cells.

(iii) Construct the solution of a local Riemann problem using these left and right
states and from this evaluate the numerical flux. Use such numerical fluxes in
Eq. 4.20 or Eq. 4.21 and evaluate the right hand side of

5(qV) -]](.ih)dS (4.22)
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(iv) Steps (i)-(iii) complete the discretization of the right hand side of Eq. 4.22.

To the resulting semi-discrete system of equations, we apply a suitable time-

integration procedure such as Heun's method (for second-order accuracy) or the

fourth-order accurate Runge-Kutta scheme.

Reconstruction of Piecewise Polynomials

For cell C, the corresponding polynomial may be written as

np

3= -p, ,(')Y z (  (4.23)
i=0

In order to define this polynomial, we need to know the polynomial coefficients Pi
which must be determined by a suitable procedure. One of the conditions that this

polynomial must satisfy is
P=3 c (4.24)

In addition to Eq. 4.24, we need np more appropriate equations to solve for pF, i =

0,... , np. For example, if we match the cell average of PC(x,, y, z) with 4N over np

neighboring cells as well as for cell C, we will obtain a total of np+ 1 equations which

will be sufficient to solve for all (np + 1) coefficients of the polynomial.

"p

arpc = N = C,N1 ,N 2 ,...,, 1 , (4.25)
i=0

This leads to the matrix system of equations given by

AP=Q (4.26)

where A is matrix of size (np + 1) x (np + 1), P is the set of unknown polynomial

coefficients, and Q is the collection of known cell averages of the dependent variables

at (np + 1) cells including and in the neighborhood of cell C.
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Neighbors

The UNIVERSE-series CFD formulation defines a "neighbor" of a given cell in

a very flexible and useful way.

First, we consider two types of cell connectivities (Fig. 4.3):

(1) Node-aligned cells (NAC)

(2) Surface-aligned cells (SAC)

Next, we consider different types of neighbors:

(1) Touching neighbors (TN)

These include

(la) Common-node neighbor (CNN)

(1b) Common-face neighbor (CFN)

(1c) Touching-face neighbor (TFN)

(2) Proximity neighbors (PN)

This latter type is defined in terms of distance from a given cell.

Neighborhood Hierarchy

A neighborhood is now defined to be a collection of neighboring cells.

H' is the cell itself.

H' is the cell and its neighbors.

H' is defined as the union of H' and the neighbors of all the cells in H.

This process may be continued recursively.
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Node Aligned Cells
(NAC)

I T 3H

Surface Aligned Cells
(SAC)

Fig. 4.3 Node-aligned and surface aligned cells
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Least-Squares Reconstruction

Let us now consider a neighborhood of cells constructed hierarchically from one

central cell. It is, in general, true that any neighborhood hierarchy may either contain

less than or greater than (np + 1) cells and not just exactly (np + 1) cells. We have

already considered the case when we have exactly the number of cells required to

solve for the number of polynomial coefficients. Now, let us consider the case when

we have a neighborhood with (ne + 1) cells where nc > np. The previous hierarchical

neighborhood is assumed to have less than (np + 1) cells. In this case, we have an

overdetermined set of equations AP = Q where A is an (nc + 1) x (np + 1) matrix

and Q is a set of (nc + 1) cell averages.

We can solve this set of equations in the context of a generalized inverse using the

least squares method. We first subtract the equation for cell C from all the remaining

equations. Let the resulting set of equations (with the row and column corresponding

to cell C removed from consideration temporarily) be

AP =Q (4.27)

It is clear that A is a matrix of size nc x np. In the least-squares method, we now

solve the generalized system of equations

AAT = ATQ (4.28)

By solving Eq. 4.28, we obtain np polynomial coefficients. Substituting these into the

equation for cell C we have separated out earlier, we obtain the remaining polynomial

coefficients. The matrix ATA is symmetric.

The resulting reconstructed polynomial has the property that its average matches

the cell average #c but it does not necessarily match any other cell average. How-

ever, the average of the polynomial taken over the region defined by each cell in the

neighborhood is a good fit to all the corresponding cell averages in the "least-squares"

sense. This procedure yields an eminently satisfactory algorithm for smooth flows.

For another reference for least-squares quadratic reconstruction, refer to Barth.7
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ENO Reconstruction

Once again, let us consider an overdetermined set of equations to solve for the

polynomial coefficients. Now, we seek to obtain a "best" polynomial rather than a

"least-squares" one. The polynomial should result in an Essentially NonOscillatory

(ENO) interpolation. As always, the equation for cell C must be satisfied. From the
remaining nc equations, we can select any combination of np equations and solve the

resulting set of np + 1 equations. There are

(o;)
such combinations. The combination that yields the best one in terms of its ENO

property is to be preferred. For example, when the flow field contains a single shock

wave, the neighbors selected should lie on the same side of the shock as cell C.
This approach may be termed the "best stencil" formulation and has been applied

very successfully in various forms to structured grid ENO formulations. Reference 8

contains many different approaches to this task.

Alternatively, a "best term" approach has also been tried out. In this formu-
lation, the least-squares polynomials are first selected for all cells. Each coefficient

of the polynomial in a given cell corresponds to the appropriate derivative of the

polynomial (up to a constant coefficient) evaluated at the centroid of the cell. We

replace each term obtained by using the least-squares formulation by the same term

(derivative up to a constant) evaluated at the center of the cell but computed using a

neighboring cell's polynomial if certain conditions are met: e.g., the absolute value of
the term due to the neighbor polynomial times a factor greater than one is less than

the absolute value of the term due to the polynomial in the central cell. This pro-

cedure is performed in such a way as to give preference to the original least-squares

polynomial.

For one-dimensional shock-tube problems, it has often been demonstrated that

it is better to select the best stencils based on comparing interpolates of local char-
acteristic variables and not the conserved dependent variables. However, within the

context of unstructured grid formulations this approach is very expensive and con-
sideration of such issues is postponed for future work.
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Polynomial Evaluation at Quadrature Points

Recall JLat quadrature points on the surface of a cell are located at the mid

points of the faces.

(a) For CFN type of neighboring cells, at a common face the quadrature points from

either cell are at the same physical location (Fig. 4.4) .

(b) For TFN type of neighboring cells, on a touching face the corresponding quadra-

ture points may not coincide (Fig. 4.4). "Left" and "right" values must be com-

puted at each of the quadrature points and used in the flux integration. A more

sophisticated approach can also be used to identify common parts of touching

faces and the boundary quadratures rewritten as a sum of quadratures over such

common regions. TFN type of cells have not been implemented in the UNIVC

code and further consideration of related ideas is avoided in this report.

Riemann Solver

At every quadrature point, we have a local Riemann problem. We use any appro-

priate exact or approximate Riemann solver to resolve the left and right states and

construct a numerical flux. For example, Roe's,9- 1 3 Godunov's 3- 1 Osher's 13,1 5 - 17

or even a Lax-Friedrichs or Rusanov type Riemann solver can be employed and in

fact have been incorporated into the UNIVERSE-series flow solvers provided during

Phase I to NWC. NWC's Dr. Burman has also added another Riemann solver due to

Harten and Lax" 8 and this has also been added to the UNIVC code. The importance

of the Riemann solver decreases with increasing degree of interpolation for smooth

problems.

Time Stepping Scheme

In this paper, we have taken a semidiscrete approach. Other alternatives are

given in Refs. 8 and 19. A second-order time-accurate formulation is given below as

an exanple. This is fashioned after Heun's method or the second-order Runge-Kutta
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SC-1397-T

Surface Aligned Cells

Node Aligned Cells

Fig. 4.4 Quadrature points for two types of neighbors
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method (RK2). The RK4 method can be implemented in similar fashion. Higher

than second-order spatial accuracy results in reduced numerical dissipation and this

sometimes necessitates the use of the fourth-order Runge-Kutta formulation which

has a larger stability range than the second-order Runge-Kutta method.

In semidiscrete form, the equations to be solved are

( V) = RHS(4,t) (4.29)

The corresponding time stepping method can be written as

(#V)' = (4V) n + RHS(4",t-)At

q v)n+1 = 1 [(4V)n + (q V)' + AtRHS(',t"+')] (4.30)
2

The fourth-order accurate Runge-Kutta scheme can be written as

ki = RHS(ri,t")

At
2

(jV)2 = (jV)n + tk2 4.1
At

k3 = RHS(j2,t + t)
2

V) 3 = (jV)" +W k3

k4 = RHS(43,t " + )

v)n+ = (qV)n + L(k, +2k2 +2k 3 +k4 )6

In the above, the explicit dependence of RHS on t is useful for time-dependent

problems where the boundary conditions or other behavior explicitly depends on

time.
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5.0 CONSTITUTIVE EQUATIONS

The Conservation Laws

The principles of conservation of mass, momentum, and energy are fundamental

in the study of fluid dynamics and similar problems. Model conservation laws that

are simpler than the Euler or Navier-Stokes equations of fluid dynamics can be useful

to study certain aspects of the whole problem. In this section we present a linear

model equation, a nonlinear model equation and the Euler equations (for perfect gas).

A conservation law represents the principle that the conserved quantity increases or

decreases depending on whether there is a net positive or negative flux of the quantity

into the control volume being considered. When the size of cubical control volume

is permitted to shrink to zero along each one of the Cartesian coordinate directions,

if continuity of the dependent variables is assumed, the differential conservation law

form of the equations shown as Eq. 4.1 results. The integral form of the conservation

laws shown in Eq. 4.6 truly represents the original statement of the conservation

principle and in that sense can be thought of as the basic form from which the

differential form can be derived by considering the limit case of cell volume tending

to zero. However, since one is able to go from one form to the other using the steps

outlined at the beginning of Section 4 and their reverse, the particular form of the

equations used is of secondary importance. However, the differential form of the

equations serve as a convenient means to catalog the constitutive equations being

discussed and that is the approach taken here.

The Strong-Conservation-Law Form

The conservation law form of the equations (Eq. 4.1), is known as the strong-

conservation-law form. When continuity of the dependent variables can be assumed,

the equations can be rewritten in the "non-conservation-law" form given by Eq. 4.2.

The strong conservation law form of the equations is closely connected with the

existence of "weak" solutions,2 ° i.e. composite solutions composed of continuously

differentiable parts which satisfy the differential form (either the strong-conservation-

law form or the non-conservation-law form is sufficient for this purpose) together

with jump discontinuities that satisfy the appropriate jump conditions. In fact the
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jump conditions are derived from the strong-conservation-law form. Since more than
one strong-conservation-law form of the equations - all of which are equivalent for

differentiable functions - may be derivable, the specific form of the conservation

laws (in particular, the choice of the dependent variables) is significant. The choice
that corresponds most directly with the physical processes of mass, momentum, and

energy conservation are, in that sense, the most suitable.

Numerical methods are constructed for the strong-conservation-law form of the
equations in such a manner that they obey a "discrete conservation principle" (sin-
gle numerical flux per cell face) that can be exploited to "capture" shock waves and
other discontinuities. The numerical framework described in the earlier section satis-
fies this requirement. Such numerical methods can compute the solution in smooth

regions of the flowfield to the desired order of accuracy. Additionally, they can, with-
out explicitly making use of the shock-jump relations, automatically compute across

discontinuities. In order to achieve the required order of accuracy in smooth regions,
polynomial interpolation using the appropriate degree of reconstruction is employed

in the numerical framework outlined in Section 4. The piecewise polynomial approach
is utilized to permit the approximation of solutions with discontinuities. In order to
avoid undesirable "spurious" oscillations (oscillations that are not to be expected in
the exact solution), the ENO scheme is employed at the approximation level. This is
coupled to "Riemann Solvers" that represent the physics of hyperbolic conservation

laws to the desired degree of fidelity. Taken together, these aspects of the numerical

framework result in the ability to compute both smooth and weak solutions accurately

and with high fidelity.

The Weak-Conservation-Law Form

Having introduced the term "strong-conservation-law" form of the equat ions, we
now present a brief discussion of the so-called "weak-conservation-law" form for the

sake of completeness and clarification. The weak-conservation-law form is derived
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from Eq. 4.1 by applying the coordinate transformations

T =t

,7 = ,(X, , ,t)(.)

a = a(XY,z,t)

to obtain
8q 8q +t
-+ + 7- + a, a

8f, 8fL Oih

1 1 8 (5.2)
+ , + , +,

+ f3 Of r 8f3

While in years past, this form of the equations has been subject of debate as to

its use in constructing shock-capturing methods, we ignore its significance (if any)

here because it is a) unnecessary (we do not use coordinate transformations for the

conservation laws) and b) it does not directly lead to discrete conservation.

We now catalog the three sets of equations that can be selected for solution in

UNIVERSE-series codes such as UNIVC. The corresponding Riemann Solvers are

presented in the next section.

Linear Wave Equation

The multi-dimensional form of the linear wave equation for a scalar variable q

fits Eq. 4.1 with

f = aqf 2 = bqf = cq (5.3)

where a, b, and c are constants (usually S 1).
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Inviscid Burgers' Equation

The multi-dimensional form of the inviscid Burgers' equation for a scalar variable

q fits Eq. 4.1 with

f, =a 922 b21J3= c(5.4)
2 2 2

where a, b, and c are constants (usually 1).

Euler Equations

The Navier-Stokes equations can be written in three-dimensional Cartesian co-

ordinates using the conservation-law form notation as

aq + a(F1 -G) + + - (5.5)

where

S(e + p)u (e + p)v (e + p)w,
p pu pu prw

pu pu2 + p pvu pWu
pv puv pv2 + p pwvPW F , FI= puw , F2 = PVW , F3 = pw + p

Poll pUOU pvc1  pwul

P N PUaN PVN pWaN

In comparing the above equation (Eq. 5.5) with Eq. 1, we see that f, = (F -GI),

etc. The Euler equations can be obtained from the above by setting G = G2 = G3 =

0. The Euler equations form a hyperbolic set of conservation laws. For perfect gas,

we can express the pressure p in terms of the dependent variables as

P= (-Y - 1)(e -- ((pu)2 + (pu) 2 + (pW) 2 )) (5.6)
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The viscous terms are

KAT+ u7-,, + VTZY, + Wr,,
0

TX Z

=,Tz (5.7a)
pD a"

pD aO'

Kr7 , + iTx + VT 1 1, + wr,,,
0

Tzy

pD

(Ka + UT:: + VT,: +wit2 1

Txz

G3 Tzz (5.7c)

pDaelt

pD ~

and

2p- ,(& + 'I + C-)Ox 3 Ox ODy Oz

Ov22Ou _ ,( u Iw
7,,= -C-+ -+ -7)D 3 ax Oy

rx' 2j- -,,(au + -+ T)Oz 3 Ox 8y 8: (5.7d)

=P(4 + -x)

Tzz =p(a- + w
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The source term vector can be expanded to

0
0
0
0
0 (5.8)

source term

source term

The Navier-Stokes equations will be utilized in Phase II and is therefore pre-

sented here for convenience. The first five equations in Eq. 5.5 represent the usual

conservation laws for total energy per unit volume (e), mass per unit volume (p),
and the three components of momentum per unit volume (pu, pv, pw). In Phase II,
when the Reynolds-averaged form of the Navier-Stokes equations will be used to sim-

ulate turbulent flows, the additional conservation equations will be used to represent

turbulent kinetic energy, diffusivity, etc., as part of a two-equation turbulence model.

Other Equations

Since the UNIVERSE-series formulation is very flexible and the software im-

plementatioLs very modular, other sets of equations can easily be plugged in. Two
examples are 1) the equations of acoustics and 2) Maxwell's equations of electro-

magnetics. The additional species equations along with the corresponding source
terms can also be used to represent the chemically reacting species of a finite-rate-

chemistry computation. Complex equations of state may be used to represent equilib-

rium flows. Eventually, therefore, UNIVERSE-series codes can replace the USA-series

of codes.2 1- 3 5
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6.0 RIEMANN SOLVERS

General Framework

The Riemann problem is an initial value problem (IVP) with piecewise-constant
initial data (one set to the left of the origin and the other to the right). It is similar
to the "shock tube problem" of gasdynamics where at t = 0, a diaphragm separates

the left state from the right. In the shock tube, the bursting of the diaphragm brings
the left and right states into contact. In the mathematical statement of the Riemann

Problem, we assume that the left and right states are separated at t = 0 and at
t > 0, we let the two states interact. In the shock-tube problem, typically the initial
velocities are both zero. In the Riemann problem statement, we have the freedom

to specify arbitrary values for these. The Riemann problem can be constructed in
a meaningful way for any set of hyperbolic conservation laws while the shock-tube

problen. '? related direc.tly only to the solution of the Euler equations.

"tiemann Solver" is the name given to the procedure that constructs the solution
to the Riemann problem. In the one-dimensional case, knowing the solution implies

a quantitative and qualitative knowlege of q(z,t) for -oo < z < +oo and t > 0.
It turns out (for the piecewise-constant case under discussion) that the solution is
self-similar in the variable (8 = z/t. Therefore q(x, t) = qR(0), with the superscript

R denoting the solution to the Riemann problem.

Jump Conditions

We now present some facts and perspectives regarding the solution of the Rie-

mann problem in one spatial dimension corresponding to the one-dimensional system

of conservation laws given by

Oq Of(q)(6)(q+ am = 0 (6.1)

where q and f are m-vectors. If the left and right states are equal, we obtain the

degenerate Riemann problem for which the solution is

qR(e) = q, = q, (6.2)
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where the subscripts r and I refer to the right and left states respectively. In the

nontrivial case of qr 5 q1, we begin (at t = 0) with discontinuities in one or more of the

dependent variables. Discontinuities must satisfy the jump relations (see Whitharn 20 )

-i [q] + [f(q)] = 0 (6.3)

The notation [-] denotes the jump (.)r - ()1 where "." refers to any quantity. The

speed of propagation of the discontinuity is given by i.

One-Dimensional Euler Equations

Let us consider an example case for the one-dimensional Euler equations.

[eJ + [(e + p)u] = 0

[p] + [pu] = 0 (6.4)

_ipu]+ [p + PU2]= 0

If the elements of q1 are known, the jump relations given above provide m (= 3 for the

1-d Euler equations) algebraic relations for m + 1 unknowns (the m elements of qg and

i). Therefore, we have a one-parameter family of solutions possible. For example,

if i is chosen as the free parameter, the number of equations matches the remaining

number of unknowns. We can also select one of the elements of q,. or a particular

combination of them as the free parameter. For the Euler equations, therefore, we

can select Pr or Pr or u,. as the free parameter; we then use the three jump relations

to solve for (i,pr,Ur) or (,p,.,ur) or (iPr, Pr), respectively. Even if the number

of equations is sufficient (once one free parameter is chosen), the choice of the free

parameter must lead to a solvable set of equations. For 'onlinear equations, more

than one solution may also be found. We also observe that in a similar fashion, the

elements of q1 may be treated as unknowns and the elements of q, as the known

values. In fact, the sets of "knowns" and "unknowns" may also be a mixed set of left

and right states as long as there are m known values, m unknown values and a free

parameter and the resulting set of equations for the unknowns are sol-able.

For this example, let us pick i = 0. Then Eqs. 6.4 reduce to a statement that

the difference flux values corresponding to left and right states is zero. Consider the

flux values given in Table 6.1 below (-y = 1.4).
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Quantity Value

Energy Flux + pu3 /2 14.9085

Mass Flux pu 2.36643

Momentum Flux p + pu2  6.6

Table 6.1 Flux values for 1-d steady shock

Two sets of solutions are possible that satisfy the relations corresponding to values

of the fluxes. These are shown as "Solution 1" and "Solution 2" in Table 6.2 below.

Quantity Solution 1 Solution 2

pressure p 1.0 4.5

density p 1.0 2.66667

velocity u 2.36643 0.88741

Mach number M 2.0 0.57735

Entropy p/p 1.0 1.13987

eigenvalue (u - c) 1.18322 -0.64963

Table 6.2 Possible left and right states

Solution I can either correspond to q or qr and so can Solution 2. When Solution
1 or Solution 2 is selected to be both qi and q, we obtain the trivial case with no

discontinuity. Solution I corresponds to supersonic flow along the positive z direction
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with MI = 2.0. Solution 2 corresponds to subsonic flow along the positive x direction
with M 2 - 0.57735. When Solution 1 is taken to correspond to q and Solution 2
to correspond to q, we have a shock-wave discontinuity. In this case, we note that
there is an increase of entropy across the shock (when crossing over from supersonic

to subsonic &,1de) and we also note for later use that the eigenvalue u - c (c is the
local speed of sound) transitions from a larger value to a lesser value (in this case
also from positive to negative value). If we specify that Solution 2 corresponds to

9i and Solution 1 to q, we have a so-called "expansion shock". The flow suddenly
expands from subsonic to supersonic flow, entropy decreases, and the eigenvalue u - c

increases (from negative value to positive value in this case). The expansion shock
can be ruled out as unphysical (but mathematically permissible) because of entropy
decrease across the shock wave. This leaves us with the compressive shock wave as
the one desirable solution. A geometric "entropy condition" will be discussed later as

another means to avoid choosing expansion shocks as a possible solution component

for the Riemann problem.

It is left as an exercise to the reader to show that "contact discontinuities" are

also solutions to Eqs. 6.4.
X = U,

P =Pr (6.5)

P1 9 Pr

Substituting these values into Eqs. 6.4 will also show the appropriateness of the term

"linearly degenerate" that is often used to describe the contact discontinuity. Shock
waves are correspondingly referred to as "genuinely nonlinear".

Linear Constant-Coefficient Equations

Let us now apply the jump relations to a system of linear equations with f(q) -

Aq, where A is a constant matrix. The jump relations become

-i [qJ + A [q] = 0 (6.6)

The similarity between the above and the equation for the eigenvalue and eigenvector
of A is obvious. Therefore i is an eigenvalue of A and [q] is proportional to the

corresponding right eigenvector.
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Since Eq. 6.1 is assumed to be hyperbolic, Of/Oq = A has m real eigenvalues
(A,i = 1, .. , m) and a set of m linearly independent right eigenvectors (ri, =
1,... , M). Each eigenvalue corresponds to one choice of discontinuity-propagation
speed i. The jump in dependent variables across that discontinuity is proportional
to ri (see Fig. 6.1). Let

(q]i = airi (6.7)

where a, is a coefficient of proportionality.

The transition from qI to q,. takes place across the m discontinuities (Ai need not
all be distinct).

Z: airi q,. - qI = Aq (6.8a)

or Ra = Aq (6.8b)

where a is the m-vector of coefficients and R is the matrix whose columns are right
eigenvectors. We can easily solve for a

0 = R-'Aq (6.9)

Hyperbolicity guarantees the existence of R - 1. Equation 6.9 can also be written as

a = LAq (6.10)

where L is the matrix whose rows are left eigenvectors (taken in the same order as
the right vectors of R) normalized such that

LR =RL= 1 (6.11)

where I is the identity matrix.

Once again, just as in the nonlinear case, we see that each transition is a one-
parameter family of solutions. The most convenient parameter choice is ai. Of course,
an appropriate element of q,i (using the notation that there is a q,i and qti for each
transition i) can be used. The corresponding element of ri must not be zero for
solvability.
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Figure 6.1 Riemann solver for linear system of equations
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We clearly see in the case of linear systems of equations that the transition from

qI to q,. is made up of a sequence of constant states separated by transitions. The

m unknown free parameters are chosen in such a fashion that the sum of the m

transitions matches the total change from q1 to q,.

Across Discontinuities and Along Characteristics

A few words comparing the jump relations across discontinuities and invariance

of certain variables along characteristics are in order. First, we note that for linear

equations, the characteristic speeds and discontinuity-propagat-n Epeeds are one and

the same. Premultiplying Eq. 6.1 by l,, we see that

l, (Lq-i-A~q ) =0 (6.12a)

Oq Oq
IL+ Al.iL -0 (6.126)& Ox,

Cl.i+ X i =) 0(6.12c)

where ai - liq. Along lines with i - Aj,

dai aai +dL aaidc- 8-- dxcr
dt z (6.13)

+ - i~

This shows that the variables oa are constant along the characteristics whose slope is

given by i = Ai (same as the shock speed).

Riemann Invariants Along Characteristics

The ai are called Riemann invariants. In the linear case we can clearly see

that since a, are constant along the characteristics directions (also shocks), if they

were discontinuous across these lines to begin with, the left value will be maintained

constant on the left side of the characteristic (shock) and the right value will be

maintained constant on the right side of the characteristic (shock). Therefore the
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initially present discontinuities across the characteristic (shock) will be preserved

along these lines. For the Riemann problem associated with linear equations, no

continuous transition from q to q, is possible.

Continuous Transitions

We have now discussed the case of nonlinear jumps (Eq. 6.3) and linear dis-

continuities (Eq. 6.6). In order to complete the picture, we must consider the case
of continuous transition for the nonlinear problem. One must consider this because

when f = f(q) and Of/Oq = A(q), the eigenvalues are functions of q also. Let us

imagine that a change between state qli to qri (i.e. the i-th transition) is made up of

a sequence of incremental changes, with each increment described by a linear equa-

tion with a local value of constant coefficient matrix A. This situation is depicted in

Fig. 6.2a in two ways. First, the local jump (for the i-th transition) is shown in the

q - z plane. The sequence of incremental changes are shown by the indices 0 - 9.

These values are next shown in a state space diagram (q - a plane).

When the actual equations being considered are linear, the local characteris-

tic and discontinuity speeds for each incremental state is identical. For nonlinear

equations, the local incremental characteristic (and discontinuity) directions are de-

pendent on the local q. One can have either convergent or divergent characteristic

directions (Fig. 6.2b) as we sweep through the incremental states.

The case of divergent characteristics is shown on the top figure. The charac-
teristics are marked by the notation Ai where i denotes the i-th transition and i
denotes the incremental transition between incremental states j - 1 and j. In the

case of divergent characteristics, Ail is to the left of Ai in the z - t plane. The local

incremental left and right states corresponding to these incremental characteristics

are also marked for each characteristic. This picture makes complete physical sense
and results in the i-th transition being comprised of a series of incremental and small

jumps which are single-valued in the z - t plane.

When we evaluate Ai(q 1i) and Ai(qr,), we may find that they are convergent. If
we assume that the i-th transition is continuous in this case, we obtain the situation

depicted in the lower figure :n Fig. 6.2b. The transition between incremental states
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Figure 6.2a State space setup for continuous transition
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0 - 1 is by definition to take place across the characteristic identified by Ail. The

transition between incremental states 1 - 2 is to take place across Ai 2 , etc. Looking

at the situation depicted in the figure, the physical absurdity of the assumption of

continuous incremental transitions is obvious. Each of the incremental states is to

be found at two values of x/t in the diagram. Therefore, in order to avoid physically

absurd transitions, the case of convergent characteristics must not be associated with

continuous transitions but must be coupled to the discontinuous transition case that

has already been discussed earlier. However, a continuous transition for the case of

convergent characteristics can exist along the negative-t direction (the lower half of

the z - t plane). This indicates that convergent characteristics result in shock waves.

One may also consider a combination of convergent and divergent characteristic

directions in the same i-th transition. In the part with the convergent characteristics,

the solution will be multivalued and therefore we must rule out this case. Later, we

will discuss the concept of a geometric entropy condition related to this. Diverging

characteristics lead to single valued transitions between incremental states and are

allowed to occur. Thus we see that for genuinely nonlinear problems, continuous
"rarefactions" (with divergent characteristics) may arise.

Having said all of the above regarding the physical absurdity of the combination

of convergent characteristics and smooth transitions, we will see later (during the dis-

cussion of the Osher scheme) that we will indeed choose to use such a mathematically

possible approach to define an approximate Riemann solver. We will leave the details

until then.

Let us now consider the mathematics of continuous transitions. By analogy with

the linear case where Eq. 6.7 was valid, we can think of ai as a running parameter

over the incremental changes in the sequence of locally linear incremental continuous

transitions (in state space) associated with the i-th characteristic field. Thus

(di) - ri(q) (6.14)

Across such a continuous transition,

qri - li - q da
q 1 -O =(6.15)

4r(q(a))da
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Once again we see the role of aC as the free parameter, in this case the running

parameter too.

Riemann Invariants Across Continuous Transitions

We saw that in the linear case, ai can be shown to be the Riemann invariants
along characteristics. In the nonlinear case, Eqs. 6.12a and 6.12b remain valid (even
though A = A(q) and not a constant matrix). However, the transition from Eq. 6.12b
to Eq. 6.12c is only possible for linear equations and for nonlinear equations, in
general, when there are no more than two dependent variables3 . Therefore the
existence of Riemann invariants along characteristics is limited to linear equations
and, in general, to a set of two nonlinear equations.

In contrast to the above, Riemann invariants across continuous transitions exist
for the case of any number of nonlinear systems of conservation laws. However,
deriving them may be very difficult, depending on the complexity of the equations.
We already have seen in Eq. 6.14 that the change in dependent variables across the i-
th (continuous nonlinear) transition (rarefactions) is in the direction of the local right
eigenvector corresponding to the i-th eigenvalue of the Jacobian matrix A. Since the
set of right eigenvectors and left eigenvectors is orthogonal (Eq. 6.11), we see that

W da =0 for ig j (6.16)

Therefore there are m - 1 directions that are orthogonal to the direction in state
space given by ri. This is always true but here we relate the orthogonal directions to
the left eigenvectors. Now let us consider variables ik which is constructed to obey

VO'. r,(q) = 0 (6.17)

Such variables can exist because by inspecting Eq. 6.16, we see that the gradient
of k can be combinations of the left eigenvectors that are orthogonal to ri. Such
variables are invariant across the transition in state space (and across the divergent
characteristics representing the smooth transition in physical space) because

dtk dq

do, •(6.18)
ri = 0
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From Eqs. 6.17 and 6.18 we see that for each transition, there can be only m - 1

Riemann invariants. These m - 1 invariance relations provide m - 1 equations for

solving for m unknowns (say qr) and once again one suitable parameter must be

chosen to be the free parameter for the transition. For more details regarding Riemann

invariants across transitions the reader is referred to Refs. 15 and 16.

Complete Solution of Riemann Problem

Now we are ready to put together the complete picture of the exact solution to

the one-dimensional Riemann problem. The solution is made up of piecewise-constant

states separated by m transitions associated with the m eigenvalues of the Jacobian

matrix Of/q. The transitions may be continuous (rarefactions) or discontinuous.

Across each discontinuous transition, the jump relations (known as the Rankine-

Hugoniot relations for the Euler equations) hold. Each transition, irrespective of

type, is a one-parameter transition. There are therefore m unknown parameters.

These m values must be chosen so that the sum of the correspondin' *:-,,sitions adds

up to the total change qr - q1.

When all the transitions are known, the various discontinuity speeds and the

smallest and largest characteristic speeds associated -with each continuous transition

are known. Knowing these one can, in particular, determine what the dependent

variables are along the line i = 0. We denote this solution as qR

Expansion Shocks and Geometric Entropy Condition

We saw in the earlier example with the one-dimensional Euler equations that

among the multiple solutions that satisfy the Rankine-Hugoniot relations, one corre-

sponds to an expansion shock. Across such a discontinuity,

Ai(ql,) < A(q,) . (6.19)

In the case shown in Tables 6.1 and 6.2, the eigenvalue considered is (u - c). Across

such an expansion shock, the entropy decreases. For the physically correct shock
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wave, the entropy should increase and for the example being considered we also see

that

Aj(qj) > Ai(qri) (6.20)

We also saw, in our discussion of continuous transitions, that the asp-mption of

continuous transition with single-valued solutions over the transition is inconsistent

with Al > A, (overturned characteristics arise). While the "entropy"-based method

of ruling out expansion shocks is possible for the Euler equations where a physical

entropy variable is available, the geometric condition for selection of discontinuous

or continuous transitions is useful for all hyperbolic systems of conservation laws.

This geometric "entropy condition" may be stated as follows. For the i-th transition,

select discontinuity relations if Aj(q,,) > Aj(q, 1) and select the continuous transition

otherwise.

Integral Form for 1-D Conservation Laws

We now specialize the general multidimensional formulation of Section 4 to the

case of one-dimensional conservation laws in order to help the reader see many al-

gorithmic aspects come together without the added complexity of multidimensional

geometry formulation.

Beginning with Eq. 6.1 and integrating with respect to x and I, we obtain

I f, + f(q).)dxdt = 0 (6.21)

j(qC dt) dx-+I (f.dx) dt'=0 (6.22)

W +1 - C) + (f7+ 1 /2 - f'L 1/ 2 )&t = 0 (6.23)

where In, t+ ' and Xj+1/2, Xj-1/2 define the limits of integration,

-- q dz (6.24a)

is the cell average of the dependent variables and

j+*1/2 = -t f dt (6.24b)
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is the average flux along cell boundaries over an interval of time.

Equation 6.23 is the fully discrete integral form of the 1-d system of conservation

laws presented as Eq. 6.1 and can also be written as

f+ 11 2 1/+ + 12)_/= 0. (6.25)
At AX

Even though Eq. 6.25 resembles a finite-difference formula, it must be noted that it

is an exact relation that must be satisfied by any exact solution of the differential

equations. The integral form of the equations does not demand the existence of

derivatives but only weaker conditions of integrability and solutions of Eq. 6.25 can

also therefore include "weak solutions."

The semi-discrete version of Eq. 6.25 can be written as

9q fj+1/2 j-1/2 =0 (6.26)at A

and can either be obtained by integrating Eq. 6.1 only with respect to z or by taking

the limit At -# 0 in Eq. 6.25. In Eq. 6.26, 13*1/2 is the flux at cell boundary Xj3 112.

One-Dimensional Numerical Methods

We observed in the last subsection that Eq. 6.23 resembled a finite-difference

formula that may be used to advance the cell averages § from one time level to the

next if the cell boundary (face) values of the fluxes can be defined. The key is being

able to obtain the cell face values of the flux from known values of §. This may be

accomplished using piecewise polynomial interpolation (known as reconstruction) as

explained in Section 4.

Consider the initial value problem for Eq. 6.23 defined by adding to that equation

the initial conditions ,j = 1,.., J. Then, a numerical algorithm to solve Eq. 6.23

may be defined as follows:

a) Interpolate j to obtain piecewise polynomial pointwise behavior of q within each

cell.
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b) Each polynomial (within each cell) may be evaluated at x., 112 for that cell.
Collecting all such values, we find that we have, at each cell face, left and right
values (qL, qR)j+l/2.

c) Resolve the discontinuity at each cell face using solutions to the Riemann prob-
lem. (The solution procedure is usually referred to as the Riemann Solver.) This
will result in a knowledge of fi+1/2 which we shall henceforth call the numerical

flux.

d) Substitute fj*1/2 into Eq. 6.23 to advance the solution to the next time level.

Proceed to step (a) and repeat.

Notes:

1) In step (a), we must construct piecewise polynomials that match the given cell
averages. This is different from the usual interpolation of discrete pointwise
values. There are at least three different ways of performing such interpolation
in order to reconstruct the pointwise behavior of the original dependent variables
in each cell - i) reconstruction by deconvolution (RD), ii) reconstruction using
the primitive function formulation (11P), and iii) reconstruction by matching cell
averages directly (RM). The reconstruction procedure outlined in Section 4 of
this report is based on (RM). A discussion of (RD) and (RP) can be found in
Reference 3 and papers cited therein.

2) One may wonder why piecewise polynomials should be used, especially when one
sees in step (b) that this will lead to discontinous behavior at cell interfaces. In
fact, the choice of piecewise polynomials is particularly apt for just that reason.
After all, we must allow our interpolation model to permit discontinuities since
our goal is to be able to compute "weak" solutions. It is true, however, that with
piecewise polynomials of the type described in this report, the approximation
always pushes any discontinuity to be at the cell interfaces. Further refinements
have already been devised to enable discontinuities to be located even within the
cell ("subcell resolution" - Ref. 37) but it is beyond the scope of this report to
delve into such advances.

3) When dealing with systems of equations, questions arise regarding the choice of
variables to interpolate: should the reconstruction i echniques be based on match-
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ing the basic conservation variables' averages, "primitive" variables', "character-

istic" variables', etc.? These issues are not considered in this report but are

covered in Refs. 3 and 4.

4) In the case of interpolation with piecewise-constant polynomials, if we consider

two neighboring cells, we have two sets of constant values, one to the left of

and one to the right of each cell interface. This resembles the classical Riemann

problem. When higher degree polynomials are chosen, the left and right states

are not constant but a Riemann Solver may still be used to construct the solution

at the instant of initial contact between the discontinuities. More sophisticated

Riemann Solvers may also be sought - those that resolve piecewise linear left

and right state variations, etc. In this report, the semi-discrete formulation is

utilized to construct higher-order time-accurate schemes. It may be observed by

looking at Eq. 6.26 that if we use a method-of-lines approach and embed the

semi-discrete form in a Runge-Kutta time-integration scheme, for example, then

only the pointwise values of the cell interface fluxes are required. These can be

obtained using a Riemann Solver based on local values of left and right states.

5) Going back to Note 2, we can also add that for smooth data, the magnitude of

the difference between q and qr behaves with O( Ax'+ ') where r is the degree

of the interpolating polynomial. Thus, the piecewise polynomial approach is

appropriate for obtaining both smooth solutions and solutions with discontinu-

ities. For smooth solutions, the need for using "good" Riemann Solvers becomes

decreasingly important with increasing degree of polynomial approximation.

6) The procedure for multidimensional flows is similar to that for one-dimensional

problems. Interpolation in step (a) must be carried out in a suitable multidimen-

sional way. We saw in Section 4 that the boundary integration of Eq. 4.22 can

be replaced by a suitable quadrature. At each quadrature point there are two

sets of values of the dependent variables, one set from the left cell and the other

set from the right cell (or the inside and outside cells as the perspective may

be). If we have used piecewise-constant interpolation, we have a local Riemann

problem (piecewise-constant states extending to a finite distance away from the

discontinuity placed at the cell face) in the direction of the local normal to the

common cell face. With higher-degree interpolation, the remarks of Note 4 can
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be brought to bear: for an instant of time just after the left and right states

are allowed to interact, the solution to the one-dimensional Riemann problem

(along the direction that is normal to the cell face) is applicable. Therefore the

need for a multidimensional Riemann Solver and a Riemann Solver that can deal

with non-piecewise-constant left and right states can be obviated by exploiting a

suitable combination of several pointwise (in time and space) Riemann problems.

We now use a set of figures to help visualize the above concepts. Figure 6.3

simply outlines the integration limits for the 1-d integral form. Figure 6.4 shows how

an initial value problem (IVP) for Eq. 6.1 can be replaced by the corresponding one

for cell averages given by Eq. 6.25. Assuming that piecewise constant reconstruction

was used, Figure 6.5 zooms in on one local Riemann problem (IVP with piecewise

constant states) and Figure 6.6 helps visualize how the individual Riemann problems,

taken together, provide the means to update the cell averages to the next time level.

Figure 6.7 shows the use of piecewise-constant and piecewise-linear interpolation in

one spatial dimension.

Using the Riemann Solver

We have already seen that the exact solution to the Riemann problem is made

up of piecewise constant states separated by transitions. Each transition is associated

with an eigenvalue of the Jacobian matrix. For the 1-d Euler equations, there are

three eigenvalues u - c, u and u + c, where c is the speed of sound (c = % ).

The transitions associated with u ± c can either be a shock wave or a rarefaction and

that associated with u is called a contact discontinuity. The following section on the

Godunov scheme provides formulae for the construction of the exact solution. In par-

ticular, this provides the extents of the piecewise constant states and the magnitudes

of the transitions. From this information, the value of q along the ray 6 = 0 may be

determined. We denote this by qR and the corresponding flux as fR = f(qR).

Consider now Eq. 6.26 and the steps (a)-(d) of the solution procedure given in the

previous subsection. We assume piecewise constant behavior of dependent variables

q(X) = 4, Xj-1/2 < X < Zj+1 / 2  (6.27)
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Figure 6.3 1-d integration cell limits
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This results in local Riemann problems which can be solved to construct

fh+1/2 = fj'+1/2 (6.28)

These numerical fluxes can be substituted into Eq. 6.26 along with a suitable time-

stepping procedure to advance ,.

Since for hyperbolic systems it takes finite time for spatially separated locations

to influence each other, for a sufficiently small time step, the Riemann problem from

Xj.1/2 will not affect the solution to the Riemann problem at xj+1I2 and vice-versa.

We call such a time step as AtCFL with the subscript referring to the Courant-

Friedrichs-Lewy stability limit for linear equations.

For At 5 AtCFL, 1j+1/2 = 4j+1/2 (6.29)

and therefore the fully discrete form, Eq. 6.25 may also be used to advance the solution

qj.

We must note that, when there are source terms in 1-d, for higher-order poly-

nomial interpolation, and for multidimensional problems, it is still true that two

spatially separated Riemann problems will not influence each other for a sufficiently

small interval of time. However, each Riemann problem solution is no longer self

similar under these circumstances and therefore Eq. 6.29 is not true. In such cases,

it is convenient to resort to the method of lines (semi-discrete) approach.

We now illustrate three properties:

1) Discretization methods such as those described in this section (which use a Rie-

mann Solver) are "upwind" schemes.

2) Methods based on piecewise constant interpolation are only first-order accurate.

3) First-order accurate upwind schemes are monotonocity preserving.

When a Riemann flux is used as the cell interface flux, the fully discrete integral

form defined in Eq. 6.25 becomes
-+ At n

=q - -Y (f+1/2 - f7_ 1/ 2) (6.30)
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where fj+1/2 = . Adding and subtracting fj from the second term on the right

hand side (RHS), we can rewrite that term to be

f,+1/2 - ,-1 2, = (Y,+,/2 - fj) + (, - fi_,/2) (6.31)

The term fj+1/2 - fj includes the effect of all left-moving waves from the right. The

term fh - jf-1/2 includes the effect of all right-moving waves from the left. Therefore,
Eq. 6.30 describes a method of updating j that accounts for the appropriate signal

propagation effects, and hence describes an "upwind" scheme.

We leave it to the reader to show that when a > 0 for the one-dimensional version

of the linear wave equation corresponding to Eq. 5.3,

,+1/2 = aij, h-1/2 = aii,-1  (6.32)

and therefore, we obtain

w!+1 -= w? AX - _) (6.33)

Once again, we see that the numerical algorithm defined using piecewise constant

polynomials and a Riemann Solver results in an "upwind" scheme.

For piecewise constant and piecewise linear polynomial approximations, the value

of the cell average is also the pointwise value at the midpoint of each cell. Thus,

rewriting Eq. 6.33 as

u" +
1 = ul!- vu, - uj..) (6.34)

where v = a At/ Az, we see that

+1 = (1 iU") + VU"- 1  (6.35)

and therefore the method is monotonicity preserving for the linear wave equation as

long as v < 1. It is clear that the values ur + ' will be bounded by the maxima and

minima of u, and if the ul described a monotone profile, then u! + ' will preserve

such monotonicity. A Taylor-series analysis of Eq. 6.34 will also show that the finite-

difference scheme is first-order accurate.
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As motivation for the following sections, we look at Eq. 6.35 from the following

perspective. For the linear wave equation, the solution u"" should be equal to the

solution at t = t' at the foot of the characteristic drawn backwards from zj,t" +1 .
The R.., of Eq. 6.35 is equal to that value computed using linear interpolation of the
discrete values u7 and u *

We now describe some generalizations that we can use as framework for describ-
ing many schemes including those that are based on "approximate" Riemann Solvers
or even those that are not based on Riemann Solvers at all. Extending the second
term on the RHS of Eq. 6.30 even further along the lines shown in Eq. 6.31,

+ = f(q,)j+11 2 + f(q,)j+1 /2  (f(q,)j+ 1 2 - f + 1, /2) - (f.-+1/2 - f(qt).+1/2)
2 2

(6.36)
Note the use of superscript R to denote the Riemann problem solution and the sub-
scripts r and I to denote right and left states. This can be rewritten, after dropping

the subscript j + 1/2, as

N O f(q,)+ f(q,) _ (Wf)+ - (Af)- (6.37)
2 2

where the terms with the + and - superscripts represent the net flux difference

across various discontinuities and continuous transitions grouped by "positive" and
"negative" directions, respectively. It is shown in Ref. 13 how this form can be used
to represent methods using Osher's or Roe's approximate Riemann Solvers in addition

to that using the exact Riemann Solver described earlier in this section (also known
as the Godunov scheme). In fact, Eq. 6.37 can be used to represent even Split-Flux
schemes as well as schemes that do not use Riemann Solvers at all. For example,

f(q,)+ f(q) (q, -q)
2 2 (6.38)

where 4 can be a positive constant following the Lax-Friedrichs scheme or computed

as the absolute value of the maximum local eigenvalue in the manner of the Ru-
sanov scheme. We have already observed that such simpler approaches become quite
useful with higher degree polynomial interpolation. These ideas will be revisited in

somewhat more detail below.
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Operational Unification

At the surface, the Riemann problem and its solution may seem to be limited in

its applicability to one-dimensional problems with piecewise constant states. In fact,

the one-dimensional Riemann Solver can be applied effectively to multidimensional

problems as well as higher-order polynomial interpolation. In the earlier subsection on

"One-Dimensional Numerical Methods," Note 4 dealt with the usefulness of the Rie-

mann Solver when piecewise-linear and higher-degree interpolation (reconstruction)

polynomials are used. Note 6 commented about multidimensional problems.

The previous subsection discussed how the one-dimensional Riemann solver is

coupled to the one-dimensional integral law form of the equations to result in a

numerical method. In this subsection, we first outline the framework of how one-

dimensional Riemann Solvers may be applied in the direction normal to a multidi-

mensional cell face. Next we develop an operational unification that will allow us to

present the exact Riemann Solver along with approximate Riemann Solvers (Osher,

Roe, Harten-Lax) and even the Rusanov and Lax-Friedrichs schemes (which have

little to no significance as a Riemann Solver) within the same algebraic framework.

This type of unification was first presented in Ref. 13. In the following subsections,

we provide the appropriate algebraic details for all these schemes.

In previous subsections we used the subscripts I and r to define the left and

right initial states of the Riemann problem and used 1i and ri to define the local

left and right states corresponding to the i-th transition. In this and subsequent

subsections, it is more convenient to adopt a slightly different (but equally clear, we

hope) nomenclature that will be explained along the way.

As before, let qR be the exact solution to the local Riemann problem at a given

cell-face quadrature point (these points were introduced in Section 4). We define the

corrsponding flux (see Eq. 4.20) that includes the effect of the cell-face normal and

surface area to be

FR = F(qR), hS (6.39)

where fh is the local unit outward-pointing normal, S includes that fraction of the

cell-face area that can be attributed to the quadrature point based on its assigned
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"weight", and F is the vector flux (Eq. 4.5). In a similar fashion, let us define

F = F(q) -hS (6.40a)

F1 = f(q)" hS (6.40b)

F, = h(q )"fS (6.40c)

F? = F(q?) h S (6.40d)

where "?" stands for any subscript.

Let us define dF+ as the change in flux F across that part of the i-th transition

that spans the positive part of the hi - t plane (like the z - t plane in one spatial

dimension). Similarly, dFJ is the change in flux F across that part of the i-th

transition that spans the negative part of the h - t plane. We note here that dF+ = 0

over a transition for which all relevant wave speeds are negative, and vice-versa. For

a transition having both positive and negative wave speeds, both dF+ and dF[" may

be nonzero.

Let us also define

Aq = 9,- ql (6.41a)

= dF +  (6.41b)
i=1

AF- = ZdFJ (6.41c)
i=I

kAFP = AF + - AF- (6.41d)

We can then define

FR = F(qR) (6.42)

If we move to qR from q1, we can write

m

FR = F(q,) + Z dF . (6.43)
6=6
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If we approach qR from q7, we can write

MF R = F(q,) - dr,+  (6.44)
i=I1

Taking the average of Eq. 6.43 and Eq. 6.44, we get

FR-FIF) 2 dF+ - Z dF- (6.45)

This can be rewritten as

FR = (F,+ F) 1 (AF+ - AF-) (6.46a)- 2

or

F R 2 (F + FI) 1AF[ (6.46b)2 2

The exact Riemann Solver can be expressed in all of the above forms. The

approximate Riemanr' Sol,'ers will only be expressible in the form of Eq. 6.43 to

Eq. 6.46. The Rusao" .d Lax-Friedrichs schemes will fit a modified form of Eq. 6.46

where the IAFI is replaced by 4 Aq.

We now define some nomenclature that will be handy in what follows. Let

fi, i 1, ,;:j be the direction cosines of the cell-face unit normal. Let us define

n= =fi S

n= filS (6.47a)

n= fiz S

where S is defined in Eq. 6.39, and

fit= -(i + fLIt + ) (6.47b)

n= -(ni + ni + ni)

We also note here that the eigenvalues and characteristic speeds that arise as a

natural part of the various Riemann solvers to be be presented below are useful in

computing allowable time steps for explicit time-stepping schemes.
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Linear Wave Equation

The linear wave equation in three dimensions was defined in Eq. 5.3. Defining

the characteristic speed

U = nt +an, + bn +czn,, (6.48)

the exact Riemann Solver is given by

q R=q, if U>0

q R=qr ifU<0 
(6.49)

Inviscid Burgers' Equation

The inviscid form of Burgers' equation was defined in Eq. 5.4. We first define

C = nt + an, + bnr + cn, (6.50)

followed by the characteristic velocities

UI = Cq
U,. = C9'-

Next we note that for the one-dimensional inviscid Burgers' equation

au + ---- =0o (6.52)
5i ax

the characteristic speed is u and the shock speed (assuming ul > u,) is

s = (u, + u,)/2 . (6.53)

If U1 < ur a rarefaction fan is assumed. Extending these ideas to the Riemann problem

associated with the cell-face normal direction of the multidimensional problem we can

define the exact Riemann Solver as follows.

if UI U,, compute

U, = (U, + U,)/2 (.5)

FR = Uq,/2 if U, >_ 0

FR=U r q, /2 if U,<O

68



NWC TP 7207

if U, < U,, compute

FR=O ifUi<OandU,>O
F R (6.55)

FR=U,qr/2 ifUI<0andU,<0(

FR = Uiqi/2 if U, > 0

Euler Equations

For the Euler equations (Eq. 5.5), the three distinct eigenvalues are proportional

(by a factor S, see Eq. 6.39) to U - c, U, U + c where

[I = fit + u, + Vfiv +Wfi, (6.56)

The eigenvalue U = US = nt + u n, + v n. + w n. is repeated thrice when there are

no extra equations for a (see Eq. 5.5) and is repeated 3 + N times when there are N

equations for a. In this report, we only consider the case N = 0. and

Godunov Scheme

The Riemann Problem is an initial 'alue problem with piecewise-constant initial

data. For the Godunov scheme1 4 , the exact solution of the Riemann Problem is

utilized. The exact solution is wade up of constant states separated by transitions

in the values of the dependent variables across each family of waves. The wave

transitions can be of three types: 1) continuous transition across rarefaction fans, 2)

abrupt nonlinear jumps across shock waves, and 3) linearly degenerate jumps across

contact surfaces.

Let us consider the entire transition between 91 and q,. (Fig. 6.8). We write the

four constant states separating the three wave families as qo, qj, q2, and q3 where

q0 = qI and q = qr. If pi > P, the (U - c) wave is a shock. If 2 > p3, the U + c

family is a shock transition. Otherwise, these are rarefaction fans.
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SC-2382-CS

t
A

A 72= (U)S
X, =(U- c)S contact
rare faction discontinuity

fan *.

* A

q4 X3  (U+ c)S
\ q2 shock

I wave

/ 
q 3q

x

Figure 6.8 Example Riemann problem solution for 1-d Euler equations
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The following relationships are valid across the three types of wave transitions:

RAREFACTION - (U ± c) eigenvalues; i = 1, 3

Pl,/PI,7 = Pr,/Pr7 (.57)

U1, T 2ci,/(y - 1) = U, : 2c.i/(-y - 1)

SHOCK WAVE - Case 1: pl, > pr; (U + c) eigenvalue; i = 3

Al r + 1 Pt _ 1 + 1.0

2-t (y+1)pli Of + 1)

Pr, (7 - 1) + 2/(M,2),., (6.58a)
(.), = U,., + ci(Mo).,-

U,, - (Y.), = p,
U1, -(.), Pr,

SHOCK WAVE - Case 2: p, > pl,; (U - c) eigenvalue; i = I

= 7+1 (pr,_ 1) +1.0

P1, (7- 1) + 2/(M2)I, (6.58b)
(A), = U, - )I,

U,, -(.), p,,

Or, - (0#), Pl,

CONTACT DISCONTINUITY; (U) eigenvalue; i = 2

Pli "- PriF = ,(6.59)

U1, = U,.,

In the above, we have used subscripts Ii and ri to mean the constant states to the left

and right of the i-th wave transition being considered. For example, when the first
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wave is being considered, 1i = 0 and ri = 1. The quantity (M.)i is the Mach number

based on a) the velocity corresponding to the left state but measured with respect
to the moving shock wave, and b) the speed of sound corresponding to the pressure
and density of the left state. The quantity (M.),i is the counterpart corresponding
to the right state. The associated shock speeds have been denoted by (il0)j.

In the above, the quantities pip't and U : -2 c are Riemann Invariants across

the rarefactions identified by the eigenvalues U ± c. Across the contact discontinuity,

p and U are Riemann Invariants.

It is clear that there are two equations per wave family - a total of six equations.
The unknowns are (p, p, U)1 and (p, p, U) 2 - also six in number. The six equations
are sufficient to evaluate these six unknowns. We must augment these equations with
information needed to compute the Cartesian velocity components. The quantity U
is the component of velocity along the direction of the normal to the cell face at the

quadrature point of interest. The tangential component of velocity remains invariant
across rarefaction fans and shock waves. This leads to

tUi = U0 + (U - Uo)fi,

,1 = vo + (I - Uo)fj, (6.60)

W = wo + (0 - uo),

and

U2= U3 + (0 2 - 3)

V2 = V3 + (0 2 - U3)f, (6.61)

W2 = W3 + (U 2 - N),

One way of utilizing the exact solution, given above, to the Riemann problem is
given below. Given the initial data qo = 91 and q3 = q9, first compute the intermediate

states given by q1 and 92 in each interval. Define two more intermediate quantities

initially to be
q10 = qo 

(6.62)
q2- = q3

If the (U - c) wave is a rarefaction and (U - c)o(U - c), < 0, then compute qj. (now

defined to be a sonic point) from qo using Eqs. 6.57 (lI = 0, ri = 1*) along with the

72



NWC TP 7207

auxiliary condition

U1. - c,. = 0 (6.63a)

Similarly, if the (U + c) wave is a rarefaction and the eigenvalue changes sign between
2 and 3, compute the sonic state q2. using Eqs. 6.57 (1, = 2*, ri = 3) along with the

auxiliary sonic condition

U2. + c2. = 0 (6.63b)

Then, define the various positive and negative flux differences of Eq. 6.45 by

dF,+= max (sign{(U - c)o0,0) (F(ql.)- F(qo))

+ max (sign{(U - c)1 ,0) (F(ql) - F(q 1.))

dF " = max (-Lign{(U - c)o , 0) (F(q,.) - F(qo))

+ max (-sign{(U - c)1},0) (F(ql) - F(ql.))

dF2 = max (sign{U 1 },0) (F(q2 ) - F(q())
% J (6.64)

dF = max (-sign{ul,,O) (F(q2 ) - F(q9 ))

max (sign{(U + c)2 ),O) (F(q2.) - F(q2 ))

+ max (sign{(U + c)3},0) (F( 3 ) - F(q2.))

dF; = max (-sign{(U + c)2),0) (F(q.) - F(q2 ))

+ max (-sign{(U + C)3),0) (F(q3 ) - F(q2.))

Another approach to utilizing the Godunov scheme is to directly identify qR and then

to compute FR.

Osher's Scheme

In Godunov's scheme, when any of the waves is a shock, the equations for the in-
termediate states are not explicitly solvable for the unknowns and iterative techniques
must be employed. In contrast, Osher's numerical algorithm uses an approximate

solution to the Riemann problem which results in explicit expressions for the inter-
mediate state variables. Osher replaces the shock wave by overturned rarefactions38 .
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Thus the wave transition for both nonlinear fields (for the (U -c) field and the (U + c)

field) are described in terms of Eqs. 6.57 for rarefaction. The resulting six equations

lead to explicit formulae for pl, &I ,pI P2, U 2, p 2 . Then, Eq. 6.60 and Eq. 6.61 can be

used to obtain the Cartesian velocity components. Once the intermediate variables

are computed, the corresponding fluxes are computed and included in the expressions

for dF using the same expressions presented earlier for Godunov's scheme. For rea-

sons outlined in an earlier subsection on "Continuous Transitions," the Osher scheme

cannot be considered to be a physically correct Riemann Solver in the sense that

it assumes overturned rarefactions. For the same reason, we cannot use the Osher

scheme to evaluate the "Riemann" flux using Eq. 6.42. Inverted rarefactions notwith-

standing, the flux differences that arise in Osher's scheme can be used in Eq. 6.45 to

result in a satisfactory numerical algorithm.

Roe's Scheme

Roe's algorithm is based on the exact solution of an approximate Riemann

Problem'. In Roe's approach, specially averaged cell interface values (denoted by

subscript Roe) are determined for density, velocity and enthalpy (h = yP/((y -

1)p) + (u2 + v 2 + w 2)/2)

PRot - r f-
tp-V' + OF

tRo, = . + V

VRoe = V + V (6.65)
W,/rX, + V -1

W~o = %/.-, + ,p-

ha.e = h7vr/ + h I

from which the speed of sound c can be calculated as

CROC = /{hR.. - (uA., + R, + w o.)/2)(y - 1) (6.66)

Using these specially averaged values, Roe evaluates the Jacobian matrix and then
considers the approximate, linear, Riemann Problem given by

+ AR = 0 (6.67)
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at each cell face.

The exact solution to this problem is given for the intermediate states as

qi - q,-I = airRoe, i = 1,...,m (6.68)

with the parameters a, evaluated from the expressions

a " llto, •(q, - qi), i = 1,...m . (6.69)

In the above equations, li are the left eigenvectors of the Jacobian matrix, evaluated

such that they are orthonormal to the collection of right eigenvectors ri. The physical

meaning of the parameters ai can be identified by considering the state space of

dependent variables. We have already see that in such a space, the equations for Aqi

(Eq. 6.68) imply that the change Aqi in dependent variables across each wave family

is tangential to the corresponding right eigenvector and that ai is a measure of the

magnitude of that change.

Once again, knowing qI, q2, etc., the various fluxes can be evaluated and included

in the positive and negative flux differences in the following way which differs from

the expressions in Eqs. 6.64 for Godunov's and Osher's schemes only because the

Riemann Problem in Roe's scheme is linear, and consequently all the wave transitions

are linear jump discontinuities. Additionally, we keep the three repeated eigenvalues

U distinct because their corresponding ri are linearly independent. Therefore qo = qI

and q5 = q,. Thus, the various positive and negative flux differences of Eq. 6.45 are
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now defined by

dF + = max[sign{(U - c)Roe},O[f(q,) - f(qo)]

dF1 = max[-sign{(U - c),R,),0][f(ql) - f(qo)]

dF+ = max [sign{0Ro}, 0][f(q2 ) - f(ql)]

dF" = ma-x[-sign{UR.. }, 0][f(q2 ) - f(q1)]

dF = max[sign{UR.,0][f(q 3 )- f(q2)]d{UR},0[f(q3) - f(q 2 )] (6.70)dF;- = max[-signf C Ro, }, O][f( q3) - f(q2 )]

dF = max[signf{UR.,},0)[f(q4 ) - f(q 3 )]

dFg = max[-sign{U Ro,},0][f(q 4 ) - f(q 3 )]

dF = max[sign{(U + c)OR,0][f(q) - (q4 )]

dF; = max[-sign{(U + c)Ro},O][f(qs) - f(q 4 )]

For Roe's scheme, the values of dF* can also be directly defined to be

dF+ - (A iRo ± IAIoi), 1)ariRo, i 1, ... m . (6.71)
2 0 i""

We can therefore also write

IAFI = (RIAIL)Roe (91- - q') (6.72)

where R is the matrix of right eigenvectors, L is the matrix of left eigenvectors (with

RL = LR = I) and JAI is the diagonal matrix of absolute values of the eigenvalues

Because Roe's scheme converts the actual Riemann problem to an approximate

one that is linear, there are no continuous transitions. This approach does not rule

out expansion shocks. In order to avoid expansion shocks, a modification to the fluxes

is implemented at sonic rarefactions.

Replace dF by + [,(q,)- A,(qi)]

4 (6.73)

iff ,(qj) < 0 < Ai,(q 7 )
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It must be noted that the augmented diffusion is only added to the actual field

requiring it and not to all wave families at a sonic rarefaction.

Harten-Lax Scheme

The Harten-Lax scheme will be described in future editions of this report.

Rusanov Scheme

The Rusanov scheme can be applied within the present framework if we begin

with Eq. 6.72 and replace JAI with its spectral radius IAiWoB

JAFJ = IAImaz (q, - q,) (6.74)

Lax-Friedrichs Scheme

The Lax-Friedrichs scheme can be applied within the present framework if we

begin with Eq. 6.74 and replace the spectral radius with a positive constant e

IAF = (qr - q) . (6.75)
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7.0 GEOMETRY FORMULATION DETAILS

The geometry formulation in UNIVERSE-series unstructured grid codes is very
flexible and, in general, can handle any type of element (conservation cell). In partic-

ular, we have included three types of cells at present. These are 1) the hexahedral cell,

2) the triangular prism cell, and 3) the tetrahedral cell. The details of the geome*-y

treatment for these three cell types are given in this section.

Local Node Numbers and Coordinates

A cell type is defined by the number and placement of its vertices. A complete
definition of a cell type would also include, in addition to the vertices, any other

nodes needed to define the variation of the geometric variables z, y, z in the cell (see

Fig. 4.2 on higher-order elements). Taken together, the vertex nodes and other nodes

can simply be referred to as the nodes of the cell.

We assume a local coordinate system for each cell ( , 17, or, Fig. 4.1). The vertex

node numbers are defined in terms of an order set of integers and the values of the

local coordinates at each vertex are defined for each cell type in Figs. 7.1, 7.2 and

7.3.

Shape Function

The geometric "shape function" N.(C, i,a) was defined in Eqs. 4.9-11 for the

three cell types. Each cell node is associated with its own shape function which is a

multidimensional polynomial in C, q, a:

K

N,(CT,0) = (7.1)
&=O

The polynomial coefficients can easily be obtained by solving the K equations result-

ing from setting

1, (7.2a)

Ni (ir7j,7aj) =0, .(7.2a)
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1 SC-2317-CS

2 73

6 7

4 5
0

VERTEX 1 .r a

2 -1 -1 -1
1 +1 -1 -1
2 -1 +1 -1

3 +1 +1 -1

4 -1 -1 +1

5 +1 -1 +1
6 -1 +1 +1

7 +1 +1 +1

Figure 7.1 Vertex nodes and coordinates for hexahedron
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2 SC-2322-CS

3 4

Vertex

1 +1 -1 -1

2 0 +1 -1

3 -1 -1 +1

4 -41 1 +1

5 0 +1 +1

Figure 7.2 Vertex nodes and coordinates for triangular prism
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2 Sc-2327-CS

0

I

0 -1 -1 -1

1 +1 -1 -1

2 0 1 -1

3 0 0 +1

Figure 7.3 Vertex nodes and coordinates for tetrahedron
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When the three-dimensional geometry polynomial is built by forraing the product of

two or more lower-dimensional polynomials (Eq. 4.10, Eq. 4.11), the three-dimensional

shape functions can also be constructed from the appropriate lower-dimensional shape

functions.

Local Faces and Vertices

Each face of a cell is defined by which vertices belong to it (in terms of local

node numbers). The faces and their corresponding vertices are identified for each of

the three cell types in Figs. 7.4, 7.5 and 7.6.

Cell-Face Metrics and Normals

The method used to compute cell-face normals was outlined in Section 4 in the

paragraphs following Eq. 4.11. A more detailed description is given below.

Given the geometry polynomials (Eq. 4.9, Eq. 4.10, or Eq. 4.11), the tangents to

the local coordinate directions can be defined by

q = XVIj + Y17k + zj, (7.3)
(= xej+y k+Zi

Next we identify two vectors in the plane of the cell face by choosing suitable linear

combinations of the above.

t12t1 (7.4)V2 = t ] t22 t23

The transforzaation matrix in the above can be defined as T

T t (7.5)= t2l t22 t23)

and is defined for each face of each cell type in Figs. 7.7, 7.8 and 7.9. The T matrix

elements are selected appropriately to account for the fact that , q/, cr range, in each
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cell, from -I to +1 in many cases. The cross product of I7 and V2 defines the cell-face

normal.

Cell-Face Quadrature Points

At every cell face, the integral of any quantity Q over that face can be replaced,

upto the desired order of accuracy, by a suitable quadrature formula

fQ(s,,)dsdt = E CiQ(si,ti) (7.6)
quads.

where s, t are the representative running orthogonal coordinates tangential to the

face, and subscript i denotes a quadrature point. The coefficient Ci is the "weight"

assigned to the i-th quadrature point. For the three cell types being considered, one

encounters only two types of cell faces - "square" or "triangular" (in terms of the

running coordinates s and t, as well as the local coordinates , ,i, a). Tables 7.1 and

7.2 represent four-point Gaussian quadrature points and weights for such "square"

and "triangular" cells. This leads to fourth-order accuracy in the evaluation of cell-

face integrals. Figure 7.10 presents these quadrature points diagrammatically (not

necessarily to true scale).

a C

-0.577350269189626 -0.577350269189626 0.5

+0.577350269189626 -0.577350269189626 0.5

-0.577350269189626 +0.577350269189626 0.5

+0.577350269189626 +0.577350269189626 0.5

Table 7.1 Gaussian quadrature points for "square" face
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S t C

-0.487831473351 -0.689897894859 0.318041443825

+0.487831473351 -0.689897894859 0.318041443825

-0.204988807440 ±0.289898127317 0.181958556175

+0.204988807440 +0.289898127317 0.181958556175

Table 7.2 Gaussian quadrature points for "triangular" face

Special Cases

While, in general, the four-point Gaussian quadrature is employed for three-

dimensional problems, simpler formulae (with fewer quadrature points) can be used

sometimes without any loss of accuracy. For example, with hexahedral cells, the

midpoint rule is sufficient for one-dimensional problems in the one significant direction

being considered. For two-dimensional problems, a two-point quadrature is sufficient

for faces spanning the third direction (the two points are along the line that bifurcates

the cell in the third direction).

Calculation of Cell Volume

The cell volume is related to Eqs. 4.18 and 4.19

V = I I IV . (x + yk + zi)dV (7.7)

corresponding to i = 0 in Eq. 4.18. The volume integration can be replaced by surface

integration.

V=JJJfV.odV 
(7.8)

JI( Ai) dS
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The surface integral can, in turn, be converted to a quadrature formula based on

Eq. 7.6.

Strong-Conservation-Law Form in General Coordinates

In Section 5, the strong-conservation-law form was introduced for hyperbolic

systems of conservation laws in Cartesian coordinates. In future editions of this

report, the invariance of that form under coordinate transformations will be discussed.

Integral and Strong-Conservation-Law Forms

There is a clear and useful geometric analogy between the integral form and
the strong-conservation-law form of the equations. This will be elucidated in future

editions of this report.

Preservation of Uniform Flow

Physically, uniform flow remains uniform. Numerically, this simple fact may not

be true. In other words, when a numerical method is applied to update the solution

from time step to time step with uniform flow as the starting solution, on nonuniform

grids only a careful construction of the algorithm will guarantee that the numerical

solution does not introduce spurious disturbances into uniform flow. These issues will

be considered in detail in future editions of this report.
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Figure 7.4 Faces and their vertices for hexahedron
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Figure 7.5 Faces and their vertices for triangular prism
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Figure 7.6 Faces and their vertices for tetrahedron
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Figure 7.7 Faces and their transformation matrix for hexahedron
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Figure 7.7 Faces and their tran3ormation matrix for hexahedron - continued
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Figure 7.7 Faces and their transformation matrix for hexahedron - continued
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Figure 7.8 Faces and their transformation matrix for triangular prism
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Figure 7.8 Faces and their transformation matrix for triangular prism - continued
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Figure 7.8 Faces and their transformation matrix for triangular prism - continued

94



NWC TP 7207

SC-2330-CS

2

Face 2

/1 01 2

01
Face 2

2

Face 3

1 1[1 1 2

0
Face 3

Figure 7.9 Faces and their transformation matrix for tetrahedron
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Figure 7.9 Faces and their transformation matrix for tetrahedron - continued
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Figure 7.10 Gaussian quadrature points for "square" and "triangular" faces

97



NWC TP 7207

8.0 TOPOLOGY TREATMENT

This section describes various topology issues related to connectivity of nodes

into cells, cells common to a node, cells with a common face, how cells may be

subdivided, how links may be removed, etc.

Node Locations and Nodes of Cell

The computational unstructured mesh is defined by 1) specifying the set of nodes

and their locations (z, y, z coordinates and optionally their nodal velocities i, j, i),

and 2) specifying the set of nodes that comprise each cell. These node numbers

are called the global node numbers. Each cell has an ordered collection of nodes

numbered locally. When the global nodes of each cell are provided, they must be

given in the same order as the local node numbers. Therefore, given any local node

number, the corresponding global node number is easily determined.

Elimination of Redundant Nodes and Cells

Let us make a set of all nodes that are part of atleast one cell in the total collection
of cells given. This may be a subset of the collection of nodes for which the locations

have been provided. The extra nodes in the larger set are those nodes not needed to

define any cell. These nodes (and their locations) may have been generated during

the mesh generation process but were not used because their inclusion would have

resulted in cells that were somehow unsatisfactory. The ability to remove redundant

nodes is provided for in the unstructured-grid UNIVERSE-series formulation.

During the process of removing links, a topic to be covered later in this section,
some cells may become degenerate. This may happen in two ways: 1) the number of

distinct global vertex node numbers is less than four; 2) the number of distinct vertex

node locations is less than four. Case I deals with a "logically" degenerate cell and
case 2 with a "physically" degenerate cell. Removing these cells become redundant

for the purpose of computing the dependent variables. Removing such redundant

cells corresponding to case 1 is available in UNIVERSE-series unstructured-grid for-

mulations as part of various "grid editing" options.
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Cells of Given Node

Given the nodes of each cell, the inverse map can be constructed. This provides

knowledge of which cells include the given node. While each cell has the same number
of nodes (assuming the same cell type for every cell), the number of cells that include
a given node varies with each node. We have verified for linear elements (only vertex
nodes) that the sum of cells associated with each node is equal to the number of cells
times the number of nodes per cell which is a somewhat surprizing statement at first
glance.

Common Faces

Each face is made up of a specific set of local node numbers, each of which is
mapped on to a global node number. Using the knowledge of nodes of a cell and cells
of a node, the cells that share a common face can easily be identified.

Faces are numbered sequentially with cell number. The first six faces belong to
the first cell, the next six faces belong to the second cell, etc., for the hexahedral cell
type. Therefore, face numbers are related directly to cell numbers. A face shared by
two cells sports two face numbers, one that identifies it as part of the first cell and

another that identifies it as part of the second.

A given face of a given cell has a number of vertex nodes. Each vertex node is
associated with many cells. Out of these, one cell is the cell pointed to by the face
number being considered. There is not more than one more cell which is common to all
nodes of the face. In this fashion, the cells that share a given face can be determined.
It then becomes a relatively trivial matter to identify which face of the second cell

is identical to the face being considered. Thus the face number corresponding to the

neighbor cell can be identified, given the face number of a particular cell. Of course,
at a boundary, a face can only be part of one cell, the interior cell.

.eLDlivision

For various reasons, a cell may have to be divided into two cells. In Phase I, cell
division capability has been developed for the triangular prism cell type for use in
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two-dimensional inviscid store-tracking studies. Figure 8.1 displays a situation where
one face of a triangular prism cell has been divided. If the face is common to two
cells, this leads to both cells being subdivided into two cells each.

The following book-keeping details must be kept track of:

1. New nodes are introduced (with global numbers greater than the existing maxi-

mum.

2. New cells must be constructed (with cell numbers assigned to be greater than
the existing maximum values).

3. Two existing cells must be redefined to account for their being made of different
nodes after subdivision.

4. "Cells of node" must be recomputed in the vicinity of the subdivided cells.

5. "Face to face" correspondence must also be reestablished locally.

Such a grid "editing" capability has been developed.

Link Removal

It is sometimes desirable to remove links. In Fig. 8.2, the short link ab is an
example. The link can be removed by moving one of its nodes towards the other. In
this example, cells 2 and 5 become degenerate and must be removed from considera-
tion. Node b merges with a and therefore a is used to replace b in all cell definitions.
Consequently, node b becomes redundant and can be removed from consideration if
necessary. The book-keeping steps are given below.

1. Node b for all cells associated with b must be replaced with node a (nodes of cells
3 and 4 must be redefined).

2. Collapsed cells 2 and 5 must be removed from the database.

3. If node b is not removed from database and must be used for some purpose, the
location coordinates of b must be modified to coincide with node a's position.

100



NWC TP 7207

4. "Cells of node" and "face of face" must be recomputed in the local region.

Such a grid editing capability has also been developed.
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Original cell

After cell division

Figure 8.1 Cell division for triangular prisms
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Figure 8.2 Link removal for triangular Prisms
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9.0 GRID GENERATION METHODOLOGY

An unstructured 2-d mesh generation capability based on a distance function

concept 39 had been developed prior to the commencement of the effort described in

this report. While this approach was satisfactory based on its generality and versa-

tility, it required substantially more computer time than another method developed

during Phase I. Therefore, here we do not make any further reference to the above grid

generation methodology. However the two grid generators, TRIM2D and TRIM3D,

developed during Phase I will continue to be used during Phase II and are described

here.

TRIM2D)

TRIM2D is a two-dimensional triangular element mesh generator that was deliv-

ered to NWC during Phase I. The underlying algorithm is based on a two-dimensional

triangulation procedure that is based on constructing triangles from a cloud of points.

The cloud of points can be provided by existing structured grid generators or from

a random point generator. For example, the cloud of grid points that was used to

generate the unstructured grid shown in Fig. 9.1 was created separately for the fuse-

lage and for the bomb using a structured grid generator. The two sets of points may

overlap. A deletion capability has been implemented for those points occurring right

at the same position or too close each other. Similarly, redundant points inside the

fuselage and bomb are also deleted.

Triangulation is accomplished with the Delaunay triangulation using an advanc-

ing front technique. The initial front is composed of all the boundary edges. The

detail of the process is described below.

1. An edge of the front is arbitrarily picked up as a candidate for triangulation.

The neighboring points on the advancing side of present edge and the adjacent

two edges are first collected and sorted by the distance from the present edge.

2. A circle through an advancing-side node and two edge endpoints is constructed.

If there is any point enclosed in such a circle, this node is replaced by the enclosed

point. This process is repeated until no points can be found in a circumcircle,
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the final point is picked for triangulation and the present edge is deleted from

the front list. If there is any new edge generated, they should be included in the

front list. Figure 9.2 serves to illustrate this approach.

3. The procedure (1)-(2) continues until no front edge exists. The final grid should

be similar to that obtained using any other method based on Delaunay trian-

gulation. This is because the Delaunay triangulation procedure uniquely makes

triangles out of a given set of points in such a way that the circumcircle of any

triangle contains no other points.

TRIM3D

A new three-dimensional unstructured grid generation method, related to the

above 2-d technique, has also been developed. Chronologically, TRIM3D was devel-

oped by Dr. Kuo-Yen Szema before TRIM2D was developed by Dr. Chung-Lung

Chen, both of Rockwell Science Center. A brief description of this technique is pre-

sented below for tetrahedral cells.

The boundary of the computational domain is divided into several patches.

The geometry of each patch is described by specifying a sufficient number of non-

intersecting lines on the patch. Each line, in turn, is described in terms of a sufficient

number of points on the line (Fig. 9.3). These lines are arbitrary and are specified

by the user. From this information a parametric representation (s, t) of the surface is

developed where j and t are the local running coordinates in the plane of the surface.

For convenience, the parameters a and t are chosen to take values between 0 and 1,

where a = 0, s = 1, t = 0 and t = 1 form the boundary of the patch. Nodes are

then distributed on these four boundary lines satisfying the user-specified clustering

requirements. Presently, the code requires that the number of nodes on at least any

one pair of opposite sides ( = 0 and a = 1 ort = 0 and t = 1) be equal. This

restriction will be removed in the future.

Internal lines are generated by connecting corresponding points on a pair of

opposite sides which have the same number of nodes. Each internal line is then

divided into line segments. The length of line segments at the ends of an internal

line is determined by the average of the length of the line segments on the boundary

of the patch that intersect the given internal line. The length of the remaining line
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segments on an internal line is obtained by smoothly blending the lengths of line

segments at the ends. Triangular elements are then generated by connecting the line

segments according to the recipe described in Fig. 9.4.

The process of starting from triangular elements on the boundary of the com-

putational domain and filling up the domain with tetrahedra employs the method of
"advancing front" in Ref. 40. This technique requires specification of an initial surface

divided into triangular elements. The boundary of the computational domain is used

as the intial surface of the advancing front. The smallest element on the surface is

replaced by the three sides of a new tetrahedron constructed with that element as the

base. The fourth node of the tetrahedron is obtained either from one of the existing

nodes or by creating a new one (Fig. 9.5).

The TRIM3D grid generation consists of the following steps:

(1) Define the boundary patches (including body surface and outer boundary).

(2) Triangular elements are then generated on each patch based on user supplied

information regarding the number of points and mesh streching.

(3) These triangular elements are used as initial surface of the advancing front.

(4) Tetrahedral cells are then contructed with the triangular elements as bases. In

order to avoid large cells intersecting with small cells, the smallest triangular

element from the list of faces is always used.

(5) Select or create a point to form a tetrahedral cell from the base triangular element

(ABC, in Fig. 9.6).

a.) The point D can belong to a neighboring triangular element (ACD) as long

as it can generate a tetrahedron satisfying certain built-in constraints. See

Fig. 9.6a (top figure).

b.) The point D can be selected from an existing grid or from a list of points

supplied for the purpose. See Fig. 9.6b (middle figure).

c.) Otherwise, a new point D can be created to form the new tetrahedron. See

Fig. 9.6c (lower figure).
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(6) Check whether the newly formed cell intersects with any already existing cells.

(7) If no suitable point can be found, some old cells have to be removed,and repeat

step (5).

(8) The new faces ABD and BCD from (5-a) or ABD, BCD, CAD from (5-b) and

(5-c), the new cell ABCD and new point D from (5-c) are all added to their

respective lists (face, cell and point).

(9) Delete the old face (ABC) from the list.

(10) Check if there are any triangular elements remaining in the front . If yes, go

back to step 4.

The two most important aspects of TRIM3D are 1) data structure and 2) the

logic to check whether any two tetrahedra intersect with each other. These aspects

are disscussed in the following section.

Data Structure

In order to find the smallest triangular element, points in the neighborhood and

neighboring triangular elements efficiently, the data structure for the faces, and the

grid points is arranged as follows:

List for The Front Face

A binary tree structure is used to form the front face list. The ordering of the

tree is arranged such that the area of the father face is smaller than the face of the

two sons. Figure 9.7 shows a binary tree of this form. The area of each face and its

position are also shown in this figure. It is noted that the position of the two sons

are located at leonl = Ifather x 2 and Ison2 = Ifather x 2 + 1, respectively. For

example, Face D located in position 4 has two sons located at position 8 (H) and 9

(I). A face should be added or deleted without altering the binary tree ordering. The

ideas of the heap-sort and heap-search algorithms (Ref. 41) are used in TRIM3D.

a) Adding a new face to the face list:
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A new face is always added first at the end of the tree. Then, the internal order

of the binary tree is rearranged by comparing the face areas of fathers and their sons.

This procedure can be described as follows:

1) A face J with area 4.0 is to be added to a binary tree in Fig. 9.8.

2) Place J at the end of heap list (10 in this case).

3) Find the father's position of 10 by using Ifather = Ijon/2. Therefore the

father's position is 5 and the face is E in this case.

4) Compare the area of faces J and E.

5) If the area of J is less than that of face E, interchange the position of father

and son (see Fig. 9.8a).

6) Unless J is at position 1 (top of the list) go back to (3).

b) Delete a face from the front face list:

A face can be removed from any position from the tree. Then, the internal order

of the tree is re-established by comparing the area of the face of the father and son.

1) Find the position from which the face is to be removed from the tree. For

example, we can consider face A at position 1 in Fig. 9.8b.

2) Place the face stored at the end of the tree at this position (1 for this case).

3) Find the two sons location by using Isonl =. Ifather x 2 and Ijon2 =

Ifather x 2 + 1.

4) Determine if the father and son's position should be changed by checking

the area of the father face and two sons' faces.

if

(Area(fat her) < min(Area(eon1), Area(son2)) : no change

else

change father's position with the smaller area son's position.
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5) Repeat step 4 until no change is reqired (Fig. 9.9).

In this binary tree, the face with smallest area will always remain at the top of

the list and can be used as the next surface to be removed.

List for Points in the Neighborhood

An octree data structure is used to efficiently locate points in a neighborhood.

The fist octant is determined from the boundary of the computational domain. At

most, eight points are stored in each octant. If ninth point falls into an octant, then

it subdivided into eight smaller octants. This procedure is continued until an octant

with vacant storage is found. Figure 9.10 illustrates this process. A new point I is

added and it falls into octant 1 which already contains eight points A,B,C,D,EF,G,H.

It has then to be divided into eight smaller octants (octants 2-9). The newly added

point I with old points D,E,F are relocated in octant 2. In the TRIM3D code ,an array

IOCTR(l1, MXOCT) is defined to store the points. The variable MXOCT is the

maximum number of octants allowed. For each octant IOC, the following information

is stored.

IOCTR(11, IOC) = -1 the octant is full

IOCTR(11,IOC) = 0 the octant is empty

IOCTR(11, IOC) > 0 the number of points stored in this octant

IOCTR(1 :8,IC) : point numbers are stored here if IOCTR(11, IOC) > 0

The maximum and minimum z, y, z are also stored for each octant. By using this

octree, the neighboring points within some specific distance of a given point (z, y, z)

can easily be determined.

Linked List Between Point and Faces

In an unstructured grid generation code, it is important to determine the faces

that surround a given point. In order to do that, an address pointer array

"LPION(IPONT)"

for each grid point IG is first allocated. The faces surrounding point "IG" are saved
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in an array LFAPO(8, IG). The procedure to find faces surrounding a given point

IG is described below:

1) Find the address related to the given point IG.

IADRES = LPION(IG)

2) LFAPO(8, IADRES) > 0 defines number of stored faces.

LFAPO(8, IADRES) < 0 implies that next face number surrounding the grid

point IG is continued at the address abs(LFAPO(8, IADRES)).

3) LFAPO(1 : 7, IADRES) = 0 defines an empty location

LFAPO(1 : 7,IADRES) > 0 denotes face number for face which surrounds the

point IG. This method is illustrated in Fig. 9.11.

To Check for Intersecting Faces

In the process of generating cells, no two faces must intersect each other. This

condition can be satisfied only if no side of either face intersects the other face (Figure

9.12). A total of six conditions have to be checked to make sure these two faces do

not cross each other. With the notation given in the figure, determine whether a side

j3 (connecting E 4 and f 5 ) intersects the face '1 '2 (Eiz 2 , i3). The intersection point

of line (i4 Z 5 ) with the plane defined by il, f2 and E 3 is given by

The segment (F4 i) intersects the triangle (iZ,1 2 ,£3) if i, belongs to the triangle

itself. This procedure leads to three conditions for each triangle. If all six conditions

are satisfied, then the two faces do not cross.

Mesh Smoothing

The capability to "smooth" mesh point locations without changing cell connec-

tivities has been developed. Four methods are now compared in order to show their
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Fig. 9.3 Surface grid generation
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1) start with (A,B).

2) There are 2 choices:

a) A can be connected to B'

b) B can be connected to A'

3) compute lengths of AB' and BA' and choose the shorter one; for e.g., AB'.

4) since B is not connected yet, continue the process with (A,B).

5) 2 choices :

a) A can be connected to C'

b) B can be connected to B'

6) compute lengths of AC' and BB' and choose the shorter one; for e.g., BB'.

7) since both A and B are now connected, continue the process with (B,C).

Fig. 9.4 Recipe for generating triangular elements
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. : initial front surface divided into tringular elements.

ABC & CBD : two of the initial surface elements.

E & F : newly generated nodes.

ABE, BCE, CAE : new elements that replace ABC.

CBF, BDF, DCF : new elements that replace CBD.

BFE & FCE : new elements generated by connecting two existing nodes E and F.
They replace the elements BCE and CBF.

Fig. 9.5 Advancing front technique
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Fig. 9.7 Binary tree
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Fig. 9.10 Construction of octree, - continued
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Fig. 9.11 Linked list between point and faces
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relative merits. Figure 9.13 shows the original mesh which was constructed inten-

tionally to be nonuniform (with different grid densities in different regions). This

was first smoothed using an algorithm by Batina. 4 2 In this approach based on each
link being a spring, the spring stiffness has been selected to be inversely proportional

to its length. The results are not very satisfactory. This was modified by assuming
constant stiffness which results in the coordinate for each node being the arithmetic
average of its linked neighbors. The corresponding grid is shown in Figure 9.14. The

quality of the mesh is better than that of Figure 9.15. However, in general such an

approach can lead to overlapped cells near leading edges and has also proven to be
unsatisfactory in earlier trials in three dimensions. The third approach tried was to
use a constant spring stiffness but a spring force proportional to cell volume. The

resulting grid is shown in Figure 9.16. This grid is better than the previous ones. An
alternate approach was developed for the fourth method. In this, instead of assum-

ing springs along each link, a force balance was developed at each vertex based on
pressure forces proportional to cell volume acting normal to each face. The resulting

grid is shown in Figure 9.17. This method is also quite satisfactory. Finally, three

figures are attached (Figures 9.18-20) where the diamond "airfoil" has been allowed

to move over a number of time steps to various locations and orientations.

More mathematical details of the various "spring" formulations will be provided

in a future edition of this report.

Higher-Order Geometry Treatment

Approaches that may be used to derive higher-order element geometries from
meshes generated using TRIM2D and TRIM3D will be tried out in Phase II and will
be described in a future edition of this report.
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Fig. 9.13 Original nonuniform grid for use in smoothing tests
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Fig. 9.14 Grid smoothed using Batina formulation
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Fig. 9.15 Smoothing with constant stiffness and force proportional to length
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Fig. 9.16 Smoothing with constant stiffness and force proporticnal to volume
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Fig. 9.17 Smoothing with "pressure" proportional to volume
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Fig. 9.18 Diamond airfoil moved down slightly from original position
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Fig. 9.19 Grid after diamond airfoil has rotated
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Fig. 9.20 Grid after further rotation
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10.0 STORE TRACKING AND GRID ADAPTATION

We now discuss the suitability of various approaches for tracking stores separating

from their parent vehicle. The weapon or other store is assumed to be initially
stationary in a weapons bay (cavity) and subsequently released with a specified initial

dynamics. It then moves under the influence of aerodynamic forces, gravity and its

own rigid body dynamics (6 degrees of freedom). In the present effort, no propulsion
effects is included. The objective is to track the motion of the store by computing the

associated unsteady aerodynamic flow field coupled to a six-degree-of-freedom model

for the store dynamics (Fig. 10.1).

A computational methodology developed to meet the above objective could ben-

efit from the following attributes and capabilities.

(1) Grid point movement

(2) Regridding and interpolation of solution from one grid to another

(3) Non-overlapped patched-grid capability with sliding grid option

(4) Overset grid capability

Grid Point Movement

When the store moves due to aerodynamic loads (or motion forced on it by the

release mechanism), mesh points attached to the store must move with the corre-
sponding velocity. All mesh points in an appropriate neighborhood of the store are

also moved smoothly with respect to the motion of the points on the store. This
can be achieved using a method which assumes that the connection topology of the
grid is a connection of springs of suitable stiffness. Mesh points far away from the

moving object may continue to remain fixed in time. The node points inside this
region (considered as a collection of springs) is moved in an iterative process until the

spring system reaches equilibrium based on a suitable minimum-energy or variational
principle. The length of a node to node connection can be used as a measure of

spring stiffness and new locations of the node points can be obtained by either Jacobi
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Fig. 10.1 Three types of gridding techniques for moving bodies
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iteration or predictor-corrector scheme. The primary objective of this approach is to
develop smooth mesh movement that is related to body surface movement. Examples
of various grid smoothing ideas were provided in the previous section (Section 9) on

grid generation.

Adding and Removing Cells

As the store moves, mesh points attached to the store will move with it. If
we do not want to continuously smooth the mesh in the neighborhood of the store,
we will encounter situations where the cells next to the store surface will become
unsatisfactory. The links could become very small, for example. On the other hand,
links may become very large too, depending on the local direction of motion of the
st -e. When the angle between two adjacent faces (or lines in 2-d) becomes greater
then a specified value or when a link becomes too large, a cell can be subdivided. For
removing cells, the length of a link of a cell could be used as a critereon in the case of
inviscid flow. For both inviscid and viscous flows, the critereon for cell division or link
removal could be based on the goodness of the local numerical solution of the flow
field. When the cell structure is changed, the solution variables have to be reassessed.
This is done by a suitable interpolation from the cells of the original topology. The
advantage of local operations such as the above is that the interpolation process is
easy since no global searches will be required. In Section 8, we discussed several

aspects of cell division and link removal.

Regional Remeshing

In a chosen region around the moving body all the node points may be removed
and new grid is generated using the original method applied to the selected region.
The solution reinterpolation process in this case is much more involved.

Grid Point Movement with Regridding Options

We first consider a combination of the attributes (1), (2), and (3). An intial
grid is generated for the stationary store and the steady state solution is obtained.

The initial flow-field generated by the CFD flow solver will be used to generate the
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airloads acting on the store. The rigid-body dynamics of the store will be usf-i to

compute the store's response to the airloads. This will be translated into grid point

velocities for those nodes situated on the surface of the store. Grid point velocities

can also be assigned to all nodes in a chosen small or large region surrounding the

store. These velocities are selected to be dependent in a convenient way on the nodal

velocities defined on the store surface. The fluid-dynamic variables and the grid point

locations are integrated in time together. This results in node point motion and the

conservation cell (element) shapes will consequently change with time. After a lapse

of time, the resulting cell shapes may be unacceptable. A new grid is created out of

the old grid in such a way that the solution can be easily reinterpolated on to the new

grid from the old. Grid point (element vertex) and cell removal and addition (grid

editing) capabilities can be defined as part of the regridding strategy. Regions of the

grid can slide past contiguous regions also. This sliding mesh technique has alreidy

been employed successfully using USA-series codes in the study of two-dimensional

flow past a rotor-stator configuration in Ref. 34.

Overset Grids

Overset grids require information from the underlying grid at their boundaries.

The information contribution from the overset grid to the underlying grid must also

be determined. This could be highly involved and complicated in three dimensions.

Therefore overset grid approaches will only be considered if the preferred approach

mentioned above (using grid movement and regridding) is inadequate. The interpo-

lation technique required for the regional remesh option will also be applicable to

overset grids.
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11.0 BOUNDARY CONDITION PROCEDURES

We now discuss some theoretical and some practical issues related to implement-

ing boundary condition procedures in the UNIVERSE-series formulation.

Theoretical Considerations

In Section 6, we described the Riemann Initial Value Problem (IVP) and its
solution. The solution involved piecewise constant states separated by transitions
which are either continuous or discontinuous. The initial values for the Riemann

IVP were the left and right states. Knowing the left and right states allowed us to

solve the Riemann problem including all the individual transitions. We also noted in

Section 6 that each transition was a one-parameter family of solutions.

When boundary conditions must be considered, we focus our attention on the

Riemann Initial and Boundary Value (IBVP) problem. At a "left" boundary, for ex-

ample, we assume a constant state to the right of the boundary along with boundary

conditions to be specified at the boundary. Let us consider an example with a linear

system of equations where there is one eigenvalue of the coefficient matrix that is

positive. In other words, one wave points from the boundary to the interior. There-

fore, between the given right state and the boundary, there is only one transition with

one free parameter. If the boundary condition is specified so that this free parameter

can be determined, the Riemann IBVP can be solved. If there are two right-moving
waves at a left boundary, two suitable boundary conditions will be required.

The nonlinear case is a little more complex but can be dealt with in a fashion

similar to how nonlinearities were treated in the discussion of the Riemann IVP in

Section 6.

This serves as a brief but general introduction to the theoretical boundary con-
dition framework. We postpone for the future a detailed discussion of various specific

boundary conditions including surface tangency, supersonic and subsonic inflow and

outflow.

137



NWC TP 7207

Practical Considerations

A _omplete description of any CFD problem to be solved requires geometry
definition, boundary condition specification, and initial condition specification. Typ-
ically, different boundary conditions are employed at different boundaries. One would
like to have the flexibility of being able to specify different boundary conditions at

each boundary point or cell face in the computation.

In structured grid multi-zonal computations, boundary conditions can be conve-
niently specified by "regions". A "region" of the boundary can be identified eas-
ily by its zone number, and its structured grid index limits (JBEG(NREG) to
JEND(NREG) and KBEG(NREG) to KEND(NREG), for example). In struc-
tured grids, adjacent cells have adjacent values of the indices (J and K at the bound-

ary in the example being considered). For unstructured grids, the situation is more
complex. Neighboring cells are not necessarily tagged with consecutive cell numbers
(this is impossible except in one-dimensional string of cells). Based on the face num-
bering system described earlier, this also implies that adjacent boundary faces will

not have face number identifiers that are consecutive.

One easy way to tag boundary locations with boundary conditions is by using
global node numbers. The geometry specification is typically done patch by patch.

Node numbers in a patch can easily be numbered in consecutive order (except at

a patch boundary which is common to another patch). If we want to impose one
boundary condition type per patch, one can look at the boundary cell face being

considered, identify the global node numbers of the vertices of the face, identify the

maximal node number, and apply the particular boundary condition type associated
with that node. This is the approach taken in UNIVERSE-series codes.

138



NWC TP 7207

12.0 SOFTWARE ARCHITECTURE ISSUES

A Software Triad

A very flexible and versatile software architecture framework is being imple-

mented in all Science Center CFD Department projects including the Store Separa-

tion contract with NWC. All software will comprise three parts:

1. User interface

2. Methodology (Physics and Numerics)

3. Visualization

Previously most CFD groups thought in terms of the three stages of preprocess-

ing, solution runs, and postprocessing and the software was aligned with these three

phases. In the emerging UNIVERSE-series codes, the aim is to think in terms of

problem definition phase, solution phase and analysis phase. The solution phase will

include automatic grid generation, flow simulation, grid adaptation, etc. which used

to hitherto be considered separate stages. While the UNIVERSE-series software will

require little or no runtime intervention on the part of the user, it is still desirable

to allow the user the ability to track the solution process as it happens. In any case,

in the problem definition and solution analysis phases, user involvement is a must.

Therefore, in the new software architecture, all phases of CFD will include the user

interface, the methodolgy and the visualization sections.

The user interface will be based on the X-window environment. A simpler and

conventional approach will also be provided for use from "dumb" terminals where the

user can edit a file of control variable inputs to control a subsequent CFD run. The

user interface software will interact with the methodology and visualization software

as appropriate.

The software segment identified as "methodology" will consititute the bulk of

the computer program libraries. This will include all information about grid genera-

tion, book-keeping, solution, physics modeling, numerical modeling, etc. It will also

include all software needed to generate information to be handed over to the visualiza-

tion segment for graphical display purposes. For example, it will be the responsibility
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of "methodology" to generate the streamlines while it will be the responsibility of
"visualization" to display the streamlines via the user interface. The "methodology"

segments will interact with the user interface and visualization segments as appropri-

ate.

The visualization segment will handle the creation of graphical objects and their

manipulation and display using information provided by the user interface and the
methodology and will interact with the other two segments as appropriate. It is

of considerable advantage to program the visualization segment using a standard

graphics library such as "PHIGS+". On the other hand, the visualization segment is

much smaller than what used to comprise "plotter" software. Therefore, it becomes
very easy to create multiple versions of visualization software, one using the Silicon

Graphics graphics library, for example, and another using PHIGS+.

In a graphics exercise for postprocessing, the user interface will obtain from

the user information about what the user wants to plot, how many contour levels,
viewpoint, light sources, etc. The "methodology" will provide the actual contour lines

or polygons with function values at the vertices, etc. The visualization software will

take all this and produce a rendered image which will go back to the user interface

for display.

The three segments will be three processes running either on the same computer

or even on three different computers. They will communicate via message passing

using RPC protocol (Remote Procedure Call) and "sockets" which are part of the

TCP/IP network protocol.

This approach will provide total consistency between methodology and graphics.

Therefore much more appropriate information will be displayable including for exam-

ple: piecewise polynomial behavior; right hand side values to detect location of large

transients; local accuracy measures based on differences between "right" and "left"
values at cell interfaces; numerical flux; geometry patch and problem specification

information. This approach also minimizes the amount of work in the "visualization"

segment so that it will be easy to port those modules to various hardware platforms

and graphics libraries.

The approach presented will alleviate the need for large amounts of real memory,
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disk space, etc. on all the computers being used. For example, let us assume that a
large scale simulation is performed on a CRAY computer and the results stored on

its local disks. Let us also assume that a Silicon Graphics work station is available
for graphics. The user interface and visualization software will then be able to run

on the Silicon Graphics work station and the information that is needed for display
can be supplied over the network using the methodology program running on the

CRAY. Typically, only a few planes of information from a full CFD simulation are
displayed at any one time. This prevents having to bring the entire solution file from
the CRAY to the work station. Of course, an even better scenario is for the user

interface software to be run on an even cheaper "X" workstation leaving the Silicon

Graphics with its "graphics engine" to be able to perform rotations and translations
using that but passing on the pixel information back the "X" station for display.

The Use of C Language

The C language offers many attributes that can greatly help the development of
very versatile CFD software as part of UNIVERSE-series code development. Since
most CFD software today has been written in FORTRAN, a comparison of certain

features of the two languages is presented below for review. The C language is playing

a major role in the software being developed as part of all UNIVERSE-series projects

including the work sponsored by NWC.

1. Greater compartmentalization:

C is a structured language while FORTRAN is not. In C, it is easier to com-

partmentalize code from data. This means that all information and instructions

necessary to perform a single task can be hidden from the rest of the program.

One example is that local variables can be declared within any code block. An-

other example is that the default argument passing into functions is by value

(except for vectors).

2. Local variables:
As pointed out earlier, in C local variables can be defined within code blocks.

The variables needed within a for loop can be defined within the loop. This

assists in compartmentalization. Local variables can be static.
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3. Variable types:

C includes variables types of const, eztern, static, register, auto. const is like

FORTRAN's parameter. extern is like FORTRAN's common but with far greater
flexibility that can assist in compartmentalization (static eztern variables are

known only within the file they were defined in). static is like FORTRAN's save

but since variables can be defined within each code block, static can result in

variables having far more precise scope (locality) than is possible in FORTRAN.

There are no register variables in FORTRAN. Other variable types that have
no counterparts in FORTRAN are volatile and void. C does not have variables

of type complex. However, CRAY Standard C includes complex variables and

arithmetic.

4. Arithmetic operators:

C has a larger collection of arithmetic operators including % (modulo division),
-- (decrement) and ++ (increment) which are not found in FORTRAN.

5. Bitwise operators:

C has a rich collection of bitwise operators not found in FORTRAN in the form
of operators. These include left-shifts, right-shifts, and the Boolean operators of

AND, OR, EXCLUSIVE-OR, NOT, etc.

6. ? Conditionl:
C has a very special conditional operator using ?. An example is

X = 10;

y = z > 9?200: 100

Another one is

#define abs(i) (i) <0? -(i):(i)

7. Pointer variables and arithmetic:

C includes pointer arithmetic. Standard FORTRAN77 does not. C has included
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pointers from the beginning. C pointers include the ability to define pointers to

pointers and even pointers to functions. In FORTRAN also, there is a feature

similar to pointers to functions so that we can pass the name of a function as an

argument to a subprogram.

8. Arrays:

Both C and FORTRAN support unidimensional and multidimensional arrays.

Some differences are noteworthy. FORTRAN arrays are stored in memory by
columns. C arrays are stored by rows. C array references assume that position 0

is the first value along each dimension. In FORTRAN, the default first position

is identified by a subscript value of 1. In FORTRAN, the beginning and ending

values of each subscript can also be specified as part of the dimension statement.

This can be achieved in C but only indirectly. The syntax of array specification is

also different for C and FORTRAN. FORTRAN uses "DIMENSION A(10, 20)".

C uses "double a[20][10]". In C pointer arithmetic can be used to conveniently

handle array operations and often pointers and arrays are intermingled.

9. Compile time sizeof function:

C includes a compile-time sizeol function which can greatly enhance portability

of the code.

10. The comma:

C includes very flexible statement formats. One special punctuation mark is the

",". The "," operator can be used to string together several expressions. When
used on the right hand side of an assignment statement, the value assigned is the

value of the last expression of the comma-separated list.

X = (y = 3,y + 1).

In C, many variables can also be equated to a single expression.

11. Structures:

C includes the ability to define "structures" which are a very powerful data

formats.

143



NWC TP 7207

12. Casts:

C includes a quite formal way to perform type conversions.

13. Shorthand notation:

C includes some shorthand operators like "+ =". This is not a particularly great

advantage. The increment and decrement operators discussed earlier are more

important features because they can lead to more efficient instructions being

generated by the compiler.

14. Conditional blocks:

C includes the standard "if" and "else" constructions.

15. Swith

C includes the "switch" feature. The "switch" is rather like the computed goto
statement in FORTRAN.

16. Loops:

C has three loops, 1) the for loop, 2) the while loop and 3) the do while loop.

FORTRAN only has one type. The first two may not execute even once (like

ANSI-standard FORTRAN77 loops) while the last will always execute the loop

body once.

17. Return:

C includes the "return" statement similar to FORTRAN except that in C this

statement can be used to return a particular value.

18. Jumps:

C does not exclude jump statements like "goto" and "break". The "continue"
statement in C loops skips to the next iteration of the loop and is therefore not a

dummy statement like in FORTRAN. In C, one can even jump from the middle

of one function to the middle of another (using "setjmp" and ulongjmp").
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19. Exit:

Through the "exit()" function, the C program can pass an error code and control

back to the operating system.

20. Dynamic memory allocation:

Standard C includes dynamic memory allocation (from the heap) routines like
"malloc", "calloc", "realloc" and "free".

21. Command line arguments:

Command line arguments are standard part of the C language. A C program

can use "argc" and "argv" very effectively.

22. Recursion:

On every computer system, C is a recursive language. A function can call itself.

This can help add readability to a program. When parallel computers came on

the scene, FORTRAN compilers had to be made "stack"-based and recursive. C
was recursive from the beginning.

23. Union and Enumeration:

Along with "structures" discussed earlier, C includes other complex data types

called "unions" and "enumerations". union is like equivalence in FORTRAN.

24. Bit fields:

Bit fields can be defined for "structures". This can greatly reduce memory allo-

cations by giving us the ability to pack bit-field information into a single word

rather than using a word a byte.

25. Typedef:

The "typedef" construction allows us to define new names for existing types.

This enhances readability of source code.
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26. Flexible I/O:

C includes very flexible I/O features. This includes the ability to perform random

I/O on binary files. Both buffered and unbuffered I/O can be performed. Stream

flushing is standard part of the language. Even standard input and output

can easily be redirected. Input/output operations can also be done with main

memory used as the buffer area (e.g. using functions "sscanf" and "sprintf").

27. Preprocessor directives:

A very useful set of preprocessor directives is standard part of the language.

Macro definitions, conditional compiling, etc. can easily be accomplished. ANSI

C includes the "#pragma" directive which is used to define machine-dependent

treatments like vectorization, parallization, etc. This is similar to the "CDIRS"

compiler directives on the CRAY computer for FORTRAN programs.

28. Built-in debug primitives:

C includes "-LINE--", "-FILE-", "-DATE-", "-TIME_", and "._STDC-

variables which may be exploited by the programmer to provide debug informa-

tion in a very portable fashion. For example, the "-LINE-" predefined macro
contains the line number of the currently compiled line code. The "-FILE-"

identifier is a string that contains the name of the source file being compiled.

These two can be reset using the "#line" preprocessor directive. The "-DATE-"

macro contains the date of translation of source code into object code and the

corresponding time is in "-TIME-".

29. Comments:
C offers a much more flexible commenting capability than FORTRAN. For ex-

ample, a C comment can be an embedded part of any line.

30. Errors:
Execution errors can easily be identified using "errno" which is a global variable

and the function "perror".
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31. Signals:

C's "signal()" function may be used to specify the function to be executed if the

specified signal is received. The signal could be for abort termination, errors in

arithmetic, invalid function, system interrupt, invalid memory access, external

termination request, etc.

32. Unique temporary files and filenames:

C includes standard functions to access a temporary file and create a temporary

file name.

33. String and character manipulation:

The C library includes a very powerful set of string and character manipulation

functions. If our programs should include an ability to parse input expressions,

FORTRAN would prove to be very clumsy for that purpose and one would have

to employ C.

34. Exit processing:

C includes a very powerful exit processing capability using functions such as
"atexito" and "aborto". This can also assist in developing very user-friendly

software because the computer program can be written to provide internal trace-

back and diagnostics.

35. Sorting and searching:

C includes library functions to perform "quick sort" and "binary search" opera-

tions on records.

36. System interface:

C includes a library function "system()" which can be used to run any system

command. Along with "getenv()", etc. C can easily be interfaced with the

operating system. Remember that the whole UNIX operating system was written

147



NWC TP 7207

in C. C provides many standard system interface functions related to "time" and

"date" information.

37. Mathematical functions:

C includes the usual mathematical functions including the trigonometric func-

tions, hyperbolic functions, exponential and logarithmic functions and some mis-
cellaneous functions. C includes a random number generating routine. C does

not have standard library routines to handle complex variables because C does

not include variables of type complex.

38. Consistency checks:

The C compiler performs many consistency checks assisted by the fact that all

variables have to be declared and typed. ANSI C also includes a feature called

function prototyping which assists in checking consistency between function calls

and function declarations. Most UNIX operating systems include a utility called

"!Aint" which can be used to detect features of the named C program that are

likely to be bugs, to be non-portable, or to be wasteful. It also performs stricter

type checking than does the C compiler. The FORTRAN equivalent of "lint" is
available but not standard and therefore is often not found in the standard set

of utilities on all installations, with UNIX or otherwise.

39. C and FORTRAN coexistence:

In most modem environments, especially those that use the UNIX operating
system, C and FORTRAN routines can be linked together to produce a single

executable. This is particularly easy when self-contained subprograms are be-

ing linked. FORTRAN "COMMON" blocks are somewhat more tricky to refer

to from C but I am aware that atleast on CRAY computers running UNICOS,

C externals can be referred to from FORTRAN programs. Character variables

are also treated differently in C and FORTRAN. There are also natural incom-
patibilities when it comes to data types not available in one language or the

other.
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40. Main program:

FORTRAN main program can be named anything by the programmer. The

C main program must be called "main". It has already been pointed out that

command line arguments are passed to the C "main" program automatically and

can be used when desired.

41. Variable length and type parameter lists:

In C, you can specify a function that has a variable number and type of param-
eters. For example, this declaration specifies that func() will have at least two
integer parameters and an unknown number (including zero) of parameters after

that.

func (int i, int j, ... );

The three dots denote the presence of variable length arguments. FORTRAN

does not have such a feature.

42. Length of function and variable names:
In C, an identifier is a sequence of letters and digits. The first character must
be a letter; the underscore counts as a letter. Upper and lower case letters are
different. Identifiers may have any length, and for internal identifiers, at least the
first 31 characters are significant. Internal identifiers include preprocessor macro
names and all other names that do not have external linkage. These features can
be used to write software that is very clearly understandable.

44. Variable length arrays:

At this moment, ANSI C does not permit variable dimensioning of arrays. This
is merely an annoyance because of C's pointer capabilities. However, CRAY
Standard C permits variable length arrays. This feature has also been proposed
as an addition to the Standard through the Numerical C Extensions Group

(NCEG).

44. Summary:

C is a very flexible and powerful language. ANSI standard C has far more
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standard features than ANSI standard FORTRAN. On every machine, C is a
recursive language. On every machine with ANSI C, it is easier to run the same

program without makir, any changes, even when the program includes many so-
phisticated constructions. For example, we have only one C version of a utility

called "utof" that converts a large "update" source file into individual ".f" files

and simultaneously produces the corresponding "makefile" with all the proper
dependencies. On each machine that we use, we used to have a different FOR-

TRAN version. Another example is the "update" emulator written by Rockwell

NAAO personnel. It is far more easy to write portable code in C than in FOR-
TRAN. C has all the usual features available in FORTRAN except complex
variables and arithmetic. C has built-in memory allocation functions, built-in

system interfaces (especially to UNIX), a very flexible debug capability that can
be exploited by us, pointer capability, etc. When you look at C, you are looking

at a language powerful enough to write the whole operating system (UNIX). Can
we say the same for FORTRAN?

Common I/O for C and Fortran

It is equally easy to read or write ASCII (text) files using C or FORTRAN. The
one difference is that in "free" format, the C language recognizes only "white space"

as a delimiter between successive entities and does not recognize a "," also for the
purpose. FORTRAN has a built-in record-oriented sequential binary I/O capability
which adds to each record information regarding record length. The C language does

not. While it is very easy to do very sophisticated file manipulation in C, without
the record-oriented I/O features, we decided to develop a C language capability that
mimics the FORTRAN record-oriented sequential I/O. In this fashion, users are able
to write out grid files using standard FORTRAN constructions and the flow solver
can read the grid in as if the computer code was written in FORTRAN also. Similarly,

disk output produced by the UNIVERSE-series flow solver can easily be read in for
post-processing purposes by user-developed codes which are written in FORTRAN.
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Integrated Debugging and Diagnosis

The availability of macro definitions as part of the standard language makes it

very easy to develop an integrated debugging and diagnosis capability into software

such as UNIVERSE-series codes that is written in C. For example, test cases and even

test routines can be kept part of the source code in "dormant" mode by enclosing the

sections with suitable logic controlled by macro definitions. For example, if a section

of code is surrounded by "#ifdef IFDEBUG" and "#endif", only when IFDEBUG

is defined before this section of code using "#define IFDEBUG" will this section

even be compiled. This is far more convenient than commenting and uncommenting

large sections of code, a trick that is often used by FORTRAN programmers. The

availability of "-.FILE--" and "-LINE--" also helps in providing file and line numbers

to the user when an improper condition is encountered during a run and detected by

code logic. This feature greatly helps in reducing software development time also.

Dynamic Memory Allocation

We have already mentioned the dynamic memory allocation capability available

in standard C. If there is one feature that must be singled out to demonstrate how

the C language offers great benefits as the language of choice for writing UNIVERSE-

series codes, it is this. UNIVERSE-series unstructured grid codes exploit this feature

to (1) allocate only as much memory as is needed, (2) allocate it automatically based

on information regarding mesh size and run options supplied by the user, (3) increase

or decrease the storage automatically depending on whether new cells and nodes are

created or existing cells and nodes eliminated, (4) automatically allocate temporarily

needed memory space, etc.
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13.0 DISCUSSION OF OPTIONS AND FEATURES

This section provides a compendium of options and features available in the

UNIVERSE-series unstructured grid flow solver from the user's point of view. This

section will be revised from time to time to keep pace with the current status of the

code and this edition is therefore current as of November, 1991.

Various Equations

The present version of the unstructured-grid UNIVERSE-series code (UNIVC)

includes the ability to solve either the linear wave equation, the inviscid Burgers'

equation, or the Euler equations for compressible flow.

Riemann Solvers

For the linear wave equation and the inviscid Burgers' equation, only one choice

is provided corresponding to the exact Riemann Solver. For the Euler equations, five

choices are provided: (1) Rusanov scheme, (2) Godunov scheme (exact), (3) Roe's

scheme, (4) Osher's scheme, and (5) Harten-Lax scheme.

Types of Cells

Three types of cells can be selected: (1) hexahedron, (2) triangular prism, (3)

tetrahedron. The formulation can automatically handle degenerate versions of the

first two types of cells. For example, if one face of a hexahedron collapses to become

a point, a pyramid with a quadrilateral base results.

An option to not compute fluxes for certain faces of each cell can be exercised

if those fluxes are redundant for the particular computational simulation. For hex-

ahedral cells, each pair of faces can be selected (corresponding to the local t, q} or

a coordinate). For triangular prisms, the a direction faces (triangular faces) can be
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masked off or the three quadrilateral faces can be masked off. For tetrahedral faces,

all faces can either be masked off together or not at all.

Spatial Accuracy

A spatial accuracy of upto 6-th order is available for one-dimensional problems.

Multidimensional problems can take advantage of accuracies of upto 4-th order. The

degree of the actual interpolation polynomials used to achieve these accuracies is one

less than the order of the accuracy specified. The dimensionality of the problem can

be specified as l-d, 2-d or 3-d. For 1-d problems, the solution polynomial is expressed

in terms of z only. For 2-d polynomials, x and y are used and for 3-d polynomials all

spatial variables (z, y and z) are empolyed.

Temporal Accuracy

Time accuracies of order 1, 2, or 4 are selectable. The first-order scheme is

based on the Euler explicit formulation. The second-order scheme is based on the

second-order Runge-Kutta formulation and the fourth-order method is based on the

standard fourth-order Runge-Kutta formulation. In the future, methods based on

Taylor-series expansion in time may be employed. 19

Quadrature Options

Integration of quantities over a cell face is replaced by a suitable numerical

quadrature. This is needed for both geometric quantities as well as the dependent

variables. A four-point quadrature is always used for integrating geometric quanti-

ties unless, a simpler formula is applicable without any loss of accuracy (see Section

7 for details. The user is allowed to specify the quadrature formula to be used for

integrating the fluxes of solution variables. The midpoint rule can be selected. This

would imply the use of one value of flux per face and one value of cell-face normals.

An average value of the cell-face normal (evaluated using the appropriate geometry-

variable integration procedure as outlined above) is used for the purpose. Another

option is to use multi-point quadrature together with this average value of metrics.

This does not cause any loss of accuracy as long as the cell face is planar and not
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curved. The last and most sophisticated option allows the local value of the cell-face

normals to be evaluated at each of the multiple quadrature points.

Selection of Neighbors

An underlying algorithmic capability has been provided to select neighbors as
those cells that share a common node (CNN) or those that share a common face

(CFN). The ability to select CFN at interior cells and CNN at boundary cells has also
been constructed. These options are not controllable by the user at this time. At the

present time, only the CFN approach is used to construct neighborhood hierarchies.
For each level, the cells that share a common face with the existing collection of cells

are added to the collection, beginning with the central cell. If after orderofaccuracy-
1 passes, the number of distinct cells in the neighborhood set of cells does not exceed

the number of polynomial coefficients in the polynomial interpolation chosen, one

more pass is performed to add cells to the neighborhood. If the number of cells is still
not greater than the number of polynomial coefficients, the degree of the polynomial

is lowered until this condition is met.

ENO Options

Three ENO interpolation options are provided at this time. The first is quite
experimental and is based on the "best term" approach outlined in Section 4. The

second and third options are based on the "best stencil" approach. In the second

approach, the stencil is selected by comparing a single measure of variation evaluated

for each polynomial in the neighborhood. In the third approach, a hierarchial selection

process is used. A norm of the first variation (say sum of absolute values of the first

derivatives) is compared for first-level neighbors of the cell under consideration. The

stencil identifier is moved to the cell with a "substantially" lower norm. Next a norm

of the second variation is compared for first-level neighbors of the current stencil

identifier and the identifier is shifted to the cell with a substantially lower value of
the norm. The process is repeated as many times as the degree of the interpolating

polynomial selected. The interpolating polynomial corresponding to the final position

of the stencil identifier is adjusted to match the original cell's cell-average value and
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then used as the piecewise polynomial for that cell. The second method is the least

computationally intensive, followed by the third which in turn is trailed by the first.

1-d, 2-d, Axisymmetric and 3-d Capability

The dimensionality of the problem can be selected as I-d, 2-d or 3-d. This se-

lection determines the type of polynomial expansion to be used (see the section on

Spatial Accuracy). For 1-d problems, the hexahedral cell type is very convenient.

For 2-d problems, the hexahedral or triangular prism cell types are useful. For 3-d

problems, all cell types can be used. For axisymmetric problems, the 2-d polyno-

mial can be selected along with an axisymmetric slice of a 3-d grid representing the

problem. Fluxes in the third direction are not masked out and boundary conditions

corresponding to no mass flux through those faces are used.

Integrated 2-d Plotting Capability

An integrated two-dimensional plotting capability is provided that is useful in

applications requiring only one layer of cells of the hexahedral or triangular prism

type. The display device is assumed to be a Tektronix 4100 or 4200 series color

terminal. The computational grid can be displayed either in black and white or

colored by a selected function value. Each 2-d cell face can be colored by a single

color representing the cell-average value of the chosen function. Function profiles

along a range of cells can be plotted. Monochrome or color line contours can be

shown. One interesting contouring option available uses the local polynomial for

each cell leading to possibly discontinuous contour lines at cell interfaces. The level

of discontinuity can be a measure of local accuracy in smooth regions and can help

identify flowfield discontinuities also.

Saving Least-Squares Polynomial Constructors

The least-squares polynomial evaluation procedure was described in Section 4

(Eq. 4.28). An option is provided to save the collection of neighbors of each cell along
with the least-squares polynomial constructor for each cell given by (A TA)-IAT

When the cell topology changes, the neighborhoods must be recomputed. Even if the
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grid points move without a change in connectivity between cells, the least-squares

constructor has to be reevaluated. These interrelationships are displayed in Fig. 13.1.

Structured to Unstructured Mesh Transformations

Single-zone structured grids can be given as input to the flow solver. The code

can automatically convert this to produce an "unstructured" mesh with one of the

three cell types. This is accomplished by using the cells as they are for the hexahedral

cell type, by dividing each structured grid cell into two triangular prisms for that type,

and by dividing it into five tetrahedra for the third type.

Save Metrics or Compute as Needed

The average values of cell-face metrics for each face can be stored if necessary or

computed as needed.

Solution of Linear Equations

A set of linear equations must be solved for the least-squares reconstruction pro-

cedure. It has already been pointed out that the coefficient matrix is symmetric.

It is also positive definite as long as the collection of neighborhood cells is suitable.

For debugging purposes, the user can select an efficient linear-equation solver that is

applicable only to symmetric positive-definite matrices or a general Gaussian elimi-

nation procedure with partial pivoting. The former employs no pivoting strategy.

Grid Smoothing Options

As described in Section 9 on grid generation, several grid smoothing procedures

have been implemented and tested. These options will be documented in more detail

in future editions because they are still being changed and developed substantially.

Grid Point Movement

Several grid-point movement strategies are being developed and tested in com-

bination with various local grid editing features. These will be documented in future

editions.
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14.0 ILLUSTRATIVE EXAMPLES

Several results are presented in this section to provide an illustration of the com-

putational capability of the UNIVERSE-series formulation presented in this report.

Linear Wave Equation

The one-dimensional linear wave equation was solved using fourth-order spatial

and temporal accuracy with eighty hexahedral cells strung equally spaced along the

z direction. The boundary condition was fixed at the left boundary and the initial

conditions were chosen to be the step function. Figure 14.1 shows the profile of

the dependent variable after enough time has elapsed to move the step function to

the right by about half the computational domain. The third ENO formulation was

employed. The lack of numerical oscillations near the step is proof that the ENO

formulation is effective.

Burgers' Equation

The same case was repeated but this time by solving the inviscid Burgers' equa-

tion. The result is shown in in Fig. 14.2. The discontinuity is represented as a steep

drop with no spurious numerical oscillations, once again verifying the ENO capability.

Ringleb Flow

The Ringleb flow 7 was studied using linear, quadratic, and cubic least-squares

reconstruction. The expected order of accuracy is 2, 3, and 4, respectively. Both

quadrilateral and triangular (prism) cells were employed. The latter are constructed

by subdividing each quadrilateral cell. A fine grid with 700 quadrilateral cells (36

x 21 point structured mesh) and a coarse grid with 180 cells (19 x 11 point mesh)

were used. Table 14.1 presents the results of the accuracy study undertaken using

the two types of cells and two levels of grid resolution. The error is computed by

measuring the 11 norm of the difference between exact solution and numerical solution

at the centroid of each cell. The four columns of numbers correspond to errors in
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total energy per unit volume, density, x-momentum, and y-momentum, respectively.

Results are presented for both midpoint and two-point Gaussian quadrature formulae.

The results verify the accuracy of the implementation.

Subsonic Flow Past Circular Cylinder

An unstructured mesh with triangular-prism elements was employed for the in-

viscid flow past a circular cylinder (Fig. 14.3a). The pressure contours and surface

pressure distribution obtained at a free stream Mach number of 0.4 is presented in

Figs. 14.3b-c. Second-order least-squares reconstruction procedure was used here.

The surface pressure distribution obtained using the USA-series code employing
a second-order upwind TVD scheme (and quadrilateral cells) is also presented in

Fig. 14.3c. This figure demonstrates the accuracy of the solution obtained using the

least-squares reconstruction procedure.

Hypersonic Flow Past Circular Cylinder

Hypersonic flow past a circular cylinder (M. = 10) was computed with third-
order spatial accuracy and ENO option I using a structured mesh of 61 x 33 points.

The built-in two-dimensional plotting capability was used to produce contour lines
cell by cell using each cell's piecewise polynomial. As has been pointed out earlier,

in high-gradient regions and near discontinuities, the left and right values at cell

interfaces (based on the left and right polynomials) can be noticeably different. In

smooth regions, the differences between left and right values will not be significant.

This behavior is seen in Figure 14.4 which represents pressure contours. This example

illustrates the capability of the formulation to capture very strong shock waves.

Sphere/Cylinder as Axisymmetric Flow

The ability to be able to compute axisymmetric flows is demonstrated in this
next case where supersonic flow (M.. = 3) over a sphere/cylinder combination was
computed using one slice of a spherical grid as has been described earlier. The grid

is relatively coarse as can be seen from the figure. The same "discontinuous" contour

plotting techniquc used in the previous case was employed for this case also and the
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resulting contours are also seen in the figure. The pressure distribution along the

surface of the sphere has also been presented.

G.R.I.D Configuration

Figure 14.6 shows a composite view of the unstructured 2-d grid with triangular
elements and pressure contours for a calculation of a Mach 4 flow past a multiply

connected region whose boundaries appear as the word "GRID". A single color is
used in each grid element. The method used to generate the grid is based on a

distance function concept presented in Ref. 39. First-order spatial accuracy was used
to produce this result. This example serves to demonstrate the flexibility of the

unstructured gridding approach and is otherwise not particularly significant.

Oblique Shock Problem

Figures 14.7a-d display results from a study of a two-dimensional problem in
which there is a single oblique shock running from the lower left corner to the upper

right corner of the grid shown in Fig. 14.7a. The free stream Mach number is 2.0 and
the oblique shock angle is 40*. Free stream and after-shock conditions are imposed

on the left and lower boundaries, respectively. There are 10 quadrilateral cells along

each of the directions x and y. Pressure profiles plotted by connecting the cell-

average values along x at various constant-y locations are shown in Figs. 14.7b-
14.7d. Figure 14.7b was generated using first-order accurate reconstruction (which is
automatically ENO). Figure 14.7c corresponds to second-order ENO reconstruction

and Figure 14.7d results from fourth-order ENO reconstruction. These results serve
to verify the effectiveness of the multidimensional ENO reconstruction.

For problems with steady shock waves, the best results can be obtained with a
shock-aligned mesh and a good Riemann solver. In our flexible formulation, this can

be achieved by just subdividing the quadrilateral cells that straddle the shock wave
into two triangular cells. The corresponding grid and solution are shown in Figs.

14.7e-f. The Riemann solver due to Roe was used for this example.
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Two-Dimensional "Aircraft" and "Store"

Figure 14.8 shows Gouraud-shaded pressure contours for a two-dimensional sim-

ulation of transonic flow (M. = 0.85, 0 = 1.250) past a two-dimension projection of

a fighter configuration provided by NWC.

F-18 Configuration

The surface grid and surface pressure contours from a computational simulation

of transonic flow (Mo, = 0.85, a = 00) past an F-18 configuration with pylon, rack,

and bombs are displayed in Fig. 14.9.

Space Shuttle Multi-Body Configuration

Figures 14.10a-f present the geometry and corresponding flow-field solution for

the Space Shuttle Orbiter with External Tank (ET) and Solid Rocket Booster (SRB)

flying at M. = 1.55, a = -5.5*. The surface grid which is represented by 8731 nodes
and 14386 triangular faces is shown in Fig. 14.10b. The solution is obtained using

18288 nodes and a total of 78737 tetrahedral cells. Figure 14.10d presents the surface

pressure distribution on the fuselage at = 1800 (upper center line). The chordwise

pressure distributions on the upper surface of the wing are given in Fig. 14.10e. The

results show that the present predictions are in good agreement with experimental
data. The pressure distribution on the surface of the entire configuration is shown

in Figs. 14.10c and 14.10f. The basic features of the flow (shocks, shock interaction

between the Orbiter and ET, between the SRB and ET, and expansion waves) have

been captured well. In contrast with earlier inviscid work, 11 the present approach

required almost no effort for grid generation (the problem of geometry definition of

the surface remains the same).

161



NWC TP 7207

SC53644

1.0-

0.8-

0.6-

> ~0.4-

0.2-

-0.725 x10-12 -1 __r- --
00.2 0.4 0.6 0.8 1.0
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FOR QUADRILATERAL GRID

2nd order
midpoint
COARSE GRID
3.377E-3 1.267E-3 1.765E-3 1.062E-3
FINE GRID
8.079E-4 3.OOOE-4 3.248E-4 2.174E-4
AVERAGE RATIO OF Li NORM. 4.68

3rd order
midpoint
COARSE GRID
1.790E-3 6.481E-4 8.345E-4 4.969E-4
FINE GRID
3.431E-4 1.243E-4 1.558E-4 9.906E-5
AVERAGE RATIO OF Li NORM: 5.20

3rd order
gaussian-two points
COARSE GRID
1.501E-3 5.902E-4 8.156E-4 5.173E-4
FINE GRID
1.939E-4 7.802E-5 1.122E-4 7.040E-5
AVERAGE RATIO OF Li NORM: 7.48

4th order
gaussian-two points
COARSE GRID
1.394E-3 5.502E-4 5.616E-4 5.292E-4
FINE GRID
1.215E-4 4.829E-5 4.878E-5 3.091E-5
AVERAGE RATIO OF Li NORM: 12.88

FOR TRIANGULAR GRID

3rd order
gaussian-two points
COARSE GRID
1.193E-3 4.376E-4 6.101E-4 3.892E-4
FINE GRID
1.740E-4 6.312E-5 8.385E-5 4.776E-5
AVERAGE RATIO OF Li NORM: 7.30

4th order
gaussian-two points
COARSE GRID
3.836E-4 1.456E-4 1.971.E-4 1.566E-4
FINE GRID
2.777E-5 1.041E-5 1.329E-5 1.019E-5
AVERAGE RATIO OF Li NORM: 14.50

Table 14.1 Ringleb flow results

164



NWC TP 7207

4.-4.01)
3.2- 3.2

2.4 2A

V V

0.8 0.8

0 0
-2.0 -1.2 -0.4 0.4 1.2 2.0 -2.0 -1.2 -0.4 0.4 1.2 2.0

x x

(C) 1.14 -USA

1.02 0 UNIVERSE

0.908 ..
p

0.792 \ /
0.676

0.560 -
0 0.628 1.26 1.88 2.51 3.14

e

Figure 14.3 Subsonic flow past a circulax cylinder
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Figure 14.6 Flow~ pa-st a "grid"
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Figure -14.7 Oblique shock calculation
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Figure 14.8 Simulation of a "two-dimensional" fighter
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Figure 14.9 F-18 calculations
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